CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Importance of pomegranate	4
2.2.	Pomegranate fruit discerption	6
2.3.	Common pomegranate cultivars	7
2.4.	Physical and mechanical properties of pomegranate seeds and fruits	8
2.5.	Methods for extraction pomegranate seeds	11
2.5.1.	Separation pomegranate seed with hand tools	11
2.5.2.	Mechanical impact method	12
2.5.3.	Mechanical centrifugal method	13
2.5.4.	Pneumatic seed separator	13
2.6.	Required power for operating pomegranate seeds extracting machine	16
3.	MATERIALS AND METHODS	17
3.1.	Materials	17
3.1.1.	Pomegranate fruits	17
3.1.2.	The manufactured extracting machine	17
3.1.3.	Measuring instruments	27
3.2.	Methods	28

3.2.1.	Kinematics analysis of the extraction machine	28
3.2.2.	Experimental conditions	31
3.2.3.	Measurements and calculations	31
3.2.3.1.	Some physical properties of pomegranate fruits	31
3.2.3.2.	Extracting seed losses	32
3.2.3.3.	Seed damage	32
3.2.3.4.	Total seed losses	33
3.2.3.5.	Separating efficiency	33
3.2.3.6.	Machine productivity	33
3.2.3.7.	Required power and specific energy	34
3.2.3.8.	Operational and Criterion costs	34
4.	RESULTS AND DISCUSSION	36
4.1.	Physical properties of pomegranate fruits	36
4.2.	Effect of sieve amplitude and exciter frequency on seed damage and extraction losses	39
4.3.	Effect of sieve amplitude and exciter frequency on total seed losses and extraction efficiency	42
4.4.	Effect of separator shaft speed and exciter frequency on seed damage and extraction losses	45
4.5.	Effect of separator shaft speed and exciter frequency on total seed losses and extraction efficiency	48
4.6.	Machine productivity	51
4.7.	Required power and specific energy	52
4.8.	Operational and Criterion costs	54
5.	SUMMARY AND CONCLUSION	55

LIST OF TABLES

No.	Title	Page
3.1.	Summary of design specifications of the innovated extraction machine	25
3.2.	The reduction ratio, main counter shaft speed and, exciter frequency	31
7.1.	Average length, diameter and weight for Manfaluti pomegranate fruits	64
7.2.	Effect of sieve amplitude and exciter frequency on seed damage and extraction losses	67
7.3.	Effect of sieve amplitude and exciter frequency on total seed losses and extraction efficiency	68
7.4.	Effect of separator shaft speed and exciter frequency on seed damage and extraction losses	69
7.5.	Effect of separator shaft speed and exciter frequency on total seed losses and extraction efficiency	70
7.6.	Machine productivity	71
7.7.	Required power	71
7.8.	Specific energy	71
7.9.	Operational and Criterion costs	71

LIST OF PHOTOS

No.	Title	Page
2.1.	The component of Pomegranate fruit.	7
2.2.	Dimensions of pomegranate, three linear dimensions (left) and crown dimension (right).	10
2.3.	Operation of hand tool for easy separation of seeds.	12
2.4.	Mechanical impact method of pomegranate seed extractor.	12
2.5.	Mechanical centrifugal extraction method.	13
2.6.	(a) The principle of the air-jet impingement method for extracting pomegranate arils, (b) travelling of the nozzle over the surface of fruit in a figure of eight	
	route.	14
3.1.	Pomegranate fruit	17
3.2.	The assembly of extraction machine	18
3.3.	The assembly of the vibration system.	20
3.4	An image of the manufactured extraction machine during operation.	24

LIST OF FIGURES

No.	Title	Page
3.1.	Schematic diagram of the Separation system.	22
3.2.	Schematic diagram of the components of the innovative extracting machine.	23
4.1.	Frequency distribution of pomegranate fruit length.	36
4.2.	Frequency distribution of pomegranate fruit diameter.	37
4.3.	Frequency distribution of pomegranate fruit mass.	37
4.4.	Relationship between shelf age and firmness for peel and seed.	38
4.5.	Effect of sieve amplitude and exciter frequency on seed damage and extracting losses under constant separator shaft speed of 200 rpm.	41
4.6.	Effect of sieve amplitude and exciter frequency on total seed losses and extraction efficiency under constant separator shaft speed of 200 rpm.	44
4.7.	Effect of separator shaft speed and exciter frequency on seed damage and extraction losses under constant amplitude of 40 mm.	47
4.8.	Effect of separator shaft speed and exciter frequency on total seed losses and extraction efficiency under constant amplitude of 40 mm.	50
4.9.	Effect of sieve amplitude and separator shaft speed on machine productivity under constant exciter frequency of 101.2 Hz.	51
4.10.	Effect of sieve amplitude and separator shaft speed on required power and specific energy under constant exciter frequency of 101.2 Hz.	53
4.11.	Effect of sieve amplitude on operational and criterion costs under constant exciter frequency of 101.2 Hz and constant separator sieve speed of 200 rpm.	54

ABSTRACT

The main experiments were carried out in Agricultural Engineering Institute workshop in El- Dokki, Cairo, Egypt, and Agricultural Research Center (ARC) in2017, Ministry of Agriculture to manufacture an innovated machine for extracting pomegranate seeds distinguished of high productivity, simple design and low seed damage. The extraction machine was depending on an innovative system to extract the seeds from the peels and flesh. The experiments were carried out on a common cultivar of pomegranate (Manfaluti).

Kinematic analysis was carried out to adjust the extraction machine motion. Kinematics of the sieve motion included the determination of the optimum exciter frequency, method of changing rotor exciter frequency and method of changing separator speed.

Experiments were carried out to study some different operating parameters (exciter frequency, sieve amplitude and rotor separator speed) affecting the performance of the manufactured machine. The machine performance was evaluated in terms of machine productivity, total seed losses, extracting efficiency, specific energy and criterion cost.

The experimental results revealed that machine productivity (0.25 Mg/h), total seed losses (6.01%), extracting efficiency (70.19%), specific energy (8.8 kW.h/Mg) and criterion cost (400 L.E./Mg) were in the optimum region under the following conditions:

- 101.2Hz exciter frequency,

- 40 mm sieve amplitude and

- 200 rpm separator shaft speed.