CONTENTS

Subject

Pag

	2.1. Effect of Dietary Lutein Powder Levels Supplementation on Growth Performance of Laying Hens Traits
	2.1.1. Live body weight and weight gain2.1.2. Feed intake and feed conversion.
2.2.	Effect of Dietary Lutein Powder Levels Supplementation on Egg Production and Egg Quality Traits
	2.2.1. Egg production traits.
	2.2.2. Egg quality traits.
2.3.	Effect of Dietary Dried Tomato Pulp Levels Supplementation on Growth Performance of Laying Hens Traits
	2.3.1. Live body weight and weight gain
	2.3.2. Feed intake and feed conversion.
2.4	. Effect of Dietary Dried Tomato Pulp Levels Supplementation on Egg Production and Egg

	Qualit	У					Traits.	
	2.4.1.	E	gg	proc	luction		traits.	17
	2.4.2	Ε	Egg	qı	uality		traits.	19
2.5	. Effect Suppler Hens Traits	of Dietan mentation	ry Drie n on Gr	ed Swee owth Pe	et Red erforma	Pepper 1 ince of I	Levels Laying	22
	2.5.1.	Live	body	weight	and	weight	gain	22
	2.5.2.	Feed	 intake	and	feed	conve	ersion.	23
	• • • • • • • • •	• • • • • • • • • • •	••					

2.6. Effect of Dietary Dried Sweet Red Pepper Levels 24 Supplementation on Egg Production and Egg Traits. Quality 2.6.1 Egg production traits. 24 Egg quality 25 2.6.2 traits. 2.7. Effect of Dietary Lutein Powder, Dried Tomato Pulp 30 and Dried Sweet Red Pepper Levels Supplementation Fertility and Hatchability on of Laying Hens 2.8. Effect of Dietary Lutein Powder, Dried Tomato Pulp 31 and Dried Sweet Red Pepper Levels Supplementation on Carcass Traits of Laving Hens 2.9. Effect of Dietary Lutein Powder, Dried Tomato Pulp 34 and Dried Sweet Red Levels Pepper Supplementation on Blood Parameters of Laying Hens 2.10. Effect of Dietary Lutein Powder, Dried Tomato Pulp 39 and Dried Sweet Red Pepper Levels Supplementation on Economic Efficiency of Egg Production..... **MATERIALS** 3. AND 40 METHODS..... 3.1. Experimental Design **40** 3.2. Experimental Birds. **40** 3.3. Experimental Management of 41

						Birds.
41	Diets.		ental	Experim		3.4.
41	Traits.	Estimated	and	Collection	Data	3.5.
41	traits	nance	perform	Growth	(3.5.1.
41	body	live	e	Averag	3.5.1.1. veight	3 3
42	feed	and	intake	Feed	5.5.1.2.	3
44	traits.	tion	produc	Egg		3.5.2.
44	egg	and	number	Egg	3.5.2.1. weight	
44	d egg	rate an	luction	Egg pro	3.5.2.2. mass	
44 45	of egg	e weights	d relativ	ty traits Absolute an ents	Egg quali 3.5.3.1. compone	3.5.3.
45	shape		Egg		3.5.3.2.	
45	yolk		Egg		3.5.3.3. index	
45			index.	Egg albumen	3.5.3.4.	
46	Haugh				3.5.3.5. units	
46	yolk	Egg			3.5.3.6.	
46	thickness	ell t	sh	Egg	3.5.3.7.	

3.5.4.	Fertility	and 40	6
hatchability 3.5.4.1.		Fertility. 40	6
3.5.4.2.		Hatchability 47	7
3.5.5. Slaug	ther test and carc	 ass characteristics 47	7
3.5.6.		Blood 47	7
3.5.7.		Economic 48	8
3.6.	Statistical	Analysis. 49	9
4. RESULTS AN	D DISCUSSION.	50	0
4.1. Effect of Die and D Supplement Silver Mont	tary Lutein Powder, I ried Sweet Red ation on Productive azah Laving Hens	Dried Tomato Pulp 50 Pepper Levels e Performance of	0
4.1.1. Growth perf	ormance traits		0
4.1.1.1. Live bo weight	dy	50	0
4.1.1.2. Feed intake		50	0
4.1.1.3. Feed co	onversion	53	3
4.1.2. Egg product traits	ion	57	7
4.1.2.1. Egg j rate	production	61	1
4.1.2.2. Egg		61	1

weight	
4.1.2.3. Egg	65
mass	
4.1.3. Egg quality	69
traits	
4.1.3.1. Egg shape	73
index	
4.1.3.2. Egg volk	73
index	
4.1.3.3. Egg albumen	77
index	
4.1.3.4. Haugh	81
units	
4.1.4. Egg component weights	94
4.1.4.1. Egg volk	94
weight	
4.1.4.2. Egg albumen	100
weight	
4.1.4.3. Egg shell	104
weight	
4.1.5. Egg component	108
percentages	
4.1.5.1. Egg volk	108
percentage	
4.1.5.2. Egg albumen	112
percentage	
4.1.5.3. Egg shell	116
percentage	
4.1.5.4. Egg shell thickness	120
4.2. Effect of Dietary Lutein Powder, Dried Tomato Pulp and Dried Sweet Red Pepper Levels Supplementation on Fertility and Hatchability of Silver Montazah Laving	124
Hens	
4.2.1. Fertility percentage	124

	4.2.2. Hatchability/tota	 l eggs set percenta	ige	128
	4.2.3. Hatchabil	ity/fertility	percentage	132
4.3.	Effect of Dietary Lutein and Dried Swe Supplementation on Montazah Hens.	Powder, Dried T et Red Pepp Carcass Traits o	omato Pulp er Levels of Silver Laying	137
4.4.	Effect of Dietary Lutein and Dried Sweet Supplementation on E Silver Hens	Powder, Dried T t Red Pepper 3lood Serum Par Montazah	omato Pulp Levels rameters of Laying	142
4.5.	Effect of Dietary Lutein and Dried Sweet Supplementation on Ec Production of	Powder, Dried T Red Pepp onomical Efficien Silver Montaza	Yomato Pulp ber Levels ncy of Egg h Laying	148

Hens.....

5. SUMMERY AND CONCLUSIONS	150
6. REFERENCES.	156
7. ARABIC SUMMARY	-

LIST OF TABLES

No	Table	Title
Table 1:	Feed ingredients and chemical analysis of the basal laying diet	43
Table 2:	Live body weight \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental ages	51
Table 3:	Live body weight \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental ages	52
Table 4:	Analysis of variance for factors affecting live body weight of Silver Montazah layers at the different experimental ages	53
Table 5:	Feed in take \overline{XSE} of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	55
Table 6:	Feed intake of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	56
Table 7:	Analysis of variance for factors affecting feed intake of Silver Montazah layers at the different experimental periods	57

Table 8:	Feed conversion \overline{X} SE of Silver Montazah lavers as	
	affected by dietary lutein powder, dried tomato pulp and	
	dried sweet red pepper levels during the different	59
	evnerimental periods	
Table 0.		
Table 9:	Feed conversion X SE of Silver Montazah layers as	
	affected by interactions between dietary lutein powder,	60
	dried tomato pulp and dried sweet red pepper levels	
	during the different experimental periods	
Table 10:	Analysis of variance for factors affecting feed conversion	
	of Silver Montazah layers at the different experimental	61
	periods	
Table 11:	Egg production rate \overline{X} SE of Silver Montazah layers	
	as affected by dietary lutein powder, dried tomato pulp	63
	and dried sweet red pepper levels during the different	
	experimental periods	
Table 12:	Egg production rate \overline{X} SE of Silver Montazah layers	
	as affected by interactions between dietary lutein	64
	powder, dried tomato pulp and dried sweet red pepper	04
	levels during the different experimental periods	
Table 13:	Analysis of variance for factors affecting egg production	65
	experimental periods	
Table 14:	Egg weight \overline{X} SE of Silver Montazah layers as affected	
	by dietary lutein powder, dried tomato pulp and dried	67
	sweet red pepper levels during the different experimental	
	periods	
Table 15:	Egg weight \overline{X} SE of Silver Montazah layers as affected	68

	by interactions between dietary lutein powder, dried	
	tomato pulp and dried sweet red pepper levels during the	
	different experimental periods	
Table 16:	Analysis of variance for factors affecting egg weight of Silver Montazah layers at the different experimental periods.	69
Table 17:	Egg mass \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	71
Table 18:	Egg mass \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods.	72
Table 19:	Analysis of variance for factors affecting egg mass of Silver Montazah layers at the different experimental periods.	73
Table 20:	Egg shape index \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	75
Table 21:	Egg shape index \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	76
Table 22:	Analysis of variance for factors affecting egg shape index of Silver Montazah layers at the different experimental periods	77
Table 23:	Egg yolk index \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and	79

	dried sweet red pepper levels during the different experimental periods	
Table 24:	Egg yolk index \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods.	80
Table 25:	Analysis of variance for factors affecting egg yolk index of Silver Montazah layers at the different experimental periods.	81
Table 26:	Egg albumen index \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	83
Table 27:	Egg albumen index \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	84
Table 28:	Analysis of variance for factors affecting egg albumen index of Silver Montazah layers at the different experimental periods.	85
Table 29:	Egg Haugh units \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	87
Table 30:	Egg Haugh units \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	88

Table 31:	Analysis of variance for factors affecting egg Haugh units of Silver Montazah layers at the different experimental periods.	89
Table 32:	Roche yolk color fan of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	92
Table 33:	Roche yolk color fan of Silver Montazah layers as affected by interactions between dietary lutein powder, dried omato pulp and dried sweet red pepper levels during the different experimental periods	93
Table 34:	Analysis of variance for factors affecting Roche yolk color fan of Silver Montazah layers at the different experimental periods	94
Table 35:	Egg yolk weight \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	98
Table 36:	Egg yolk weight \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	99
Table 37:	Analysis of variance for factors affecting egg yolk weight of Silver Montazah layers at the different experimental periods.	100

Table 38:	Egg albumen weight \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	102
Table 39:	Egg albumen weight \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	103
Table 40:	Analysis of variance for factors affecting egg albumen weight of Silver Montazah layers at the different experimental periods.	104
Table 41:	Egg shell weight \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	106
Table 42:	Egg shell weight \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	107
Table 43:	Analysis of variance for factors affecting egg shell weight of Silver Montazah layers at the different experimental periods	108
Table 44:	Egg yolk percentage \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	110

Table 45:	Egg yolk percentage \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	111
Table 46:	Analysis of variance for factors affecting egg yolk percentage of Silver Montazah layers at the different experimental periods.	112
Table 47:	Egg albumen percentage \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	114
Table 48:	Egg albumen percentage \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	115
Table 49:	Analysisofvarianceforfactorseffectingegg albumen percentageofSilverMontazahlayers a thedifferentexperimentalperiods	116
Table 50:	Egg shell percentage \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	118

Table 51:	Egg shell percentage \overline{X} SE of Silver Montazah	110
	layers as affected by interactions between dietary lutein	119
	powder, dried tomato pulp and dried sweet red pepper	

	levels during the different experimental periods	
Table 52:	Analysis of variance for factors affecting egg shell percentage of Silver Montazah layers at the different experimental periods.	120
Table 53:	Egg shell thickness \overline{X} SE of Silver Montazah layers as	
	affected by dietary lutein powder, dried tomato pulp and	122
	dried sweet red pepper levels during the different	
Table 54:	Egg shell thickness \overline{X} SE of Silver Montazah lavers as	
	affected by interactions between dietary lutein powder,	122
	dried tomato pulp and dried sweet red pepper levels	125
	during the different experimental periods	
Table 55:	Analysis of variance for factors affecting egg shell thickness of Silver Montazah layers at the different experimental periods	124
	Fertility percentage \overline{X} SE of Silver Montazah layers as	
Table 56:	affected by dietary lutein powder, dried tomato pulp and	126
10010000	dried sweet red pepper levels during the different	
	Fertility percentage \overline{X} SE of Silver Montazah lavers	
Table 57:	as affected by interactions between dietary lutein powder, dried tomato pulp and sweet red pepper levels during the different experimental periods	127
Table 58:	Analysis of variance for factors affecting fertility percentage of Silver Montazah layers at the different experimental periods	128

Table 59:	Hatchability of total eggs set percentage \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	130
Table 60:	Hatchability of total eggs set percentage \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	131
Table 61:	Analysis of variance for factors affecting hatchability of total eggs set percentage of Silver Montazah layers at the different experimental periods	132
Table 62:	Hatchability of fertile eggs percentage \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	134
Table 63:	Hatchability of fertile eggs percentage \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during the different experimental periods	135
Table 64:	Analysis of variance for factors affecting hatchability of fertile eggs percentage of Silver Montazah layers at the different experimental periods.	136
Table 65:	Carcass traits \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels at the end of experimental period (48 weeks of age)	139

Table 66:	Carcass traits \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels at the end of experimental period (48 weeks of age)	140
Table 67:	Analysis of variance for factors affecting carcass traits of Silver Montazah layers at the end of experimental period (48 weeks of age)	
Table 68:	Some blood serum parameters \overline{X} SE of Silver Montazah layers as affected by dietary lutein powder, dried tomato pulp and dried sweet red pepper levels at the end of experimental period (48 weeks of age)	
Table 69:	Some blood serum parameters \overline{X} SE of Silver Montazah layers as affected by interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels at the end of experimental period (48 weeks of age)	146
Table 70:	Analysis of variance for factors affecting some blood serum parameters of Silver Montazah layers at the end of experimental period (48 weeks of age)	
Table 71:	Economic efficiency of egg production of Silver Montazah layers as affected by dietary lutein powder ,dried tomato pulp and dried sweet red pepper levels supplementation and their interactions at the end of experimental period (48 weeks of age)	149

LIST OF FIGURES

No.	Title	Page	
Figure 1:	Effects of dietary lutein powder (LP) on eggRocheYolkColorFan(RYCF)	96	
Figure 2:	Effects of dietary dried tomato pulp (DTP) on egg Roche Yolk Color Fan (RYCF)		
Figure 3:	Effects of dietary dried sweet red pepper (DSRP) on egg Roche Yolk Color Fan (RYCF)	96	
Figure 4:	Effects of interactions between dietary lutein powder, dried tomato pulp and dried sweet red pepper levels during at average experimental periods (40-48wks) on egg Roche Yolk Color Fan (RYCF)		
Figure 5:	Pictures of egg yolk coloration in raw eggs from hens fed dietary various levels from lutein powder (LP), dried tomato pulp (DTP) and dried sweet red pepper (DSRP) (according to Roche yolk color fan score)	97	

LIST OF ABBREVIATIONS

Abbreviations

Definition

Α	Egg redness
ALB	Albumen
ALT	Plasma Alanine Transaminase
APO	Apo-ester
AST	Plasma Aspartate Transaminase
b *	Egg yellowness
BAE	Beetroot
BD	Basal diet
BP	Black pepper
BT	Boiled tomato
BW	Body weight
BWG	Body weight gain
Ca	Calcium
CF	Crude fiber
CHOL	Total cholesterol
CONT	Corn-soybean meal diet
СР	Crude protein
СТХ	Canthaxanthin
DDGS	Dried distiller's grains with soluble
Df	Degree of freedom
DM	Dry matter
DSRP	Dried sweet red pepper
DTC	Dried tomato pomace

DSRP	Dried sweet red pepper
DTP	Dried tomato pulp
ECE	Extract of spinach
EE	Ether extract
EEf	Economical efficiency
EM	Egg mass
EP	Egg production
EST	Egg shell thickness
ESW	Egg shell weight
EW	Egg weight
FC	Feed conversion
FCR	Feed conversion ratio
FE	Feed efficiency
FI	Feed intake
g	Gram
GAE	Ginger root
GLC	Glucose
GSH	Glutathione
GSH-PX	Glutathione peroxidase
HDL	High density lipoproteins
HPLC	High- performance liquid chromatography
HU	Haugh unit
Kg	Kilogram
L*	Egg lightness
LDL	Low density lipoproteins
LE	Lutein esters
LP	Lutein powder
Ly	Lycopene
MDA	Malondialdehyde
ME	Metabolizable energy
MF	Marigold flower

MFE	Marigold flower extract
MFM	Marigold flower meal
Mg	Milligram
OP	Oleoresin paprika
Р	Phosphorus
PE	Paprika extract
РНА	Phytohemagglutinin
PROT	Total protein
RCF	Roche color fan
RP	Red pepper powder
RPM	Red pepper meal
RPSOM	Red pepper seed oil meal
RYCF	Roche yolk color fan
SBM	Soybean meal
SG	Specific gravity
SGP	Sweet green pepper
SI	Shape index
SM	Silver Montazah laying hens
SOD	Antioxidant superoxide dismutase
SOV	Source of variance
SP	Saponified paprika
SRP	Sweet red pepper
ТС	Total cholesterol
TG	Triglycerides
ТР	Tomato puree

TRP	Turmeric rhizome powder
TWM	Tomato waste meal
ugg-1	Microgram purr gram
μg	Microgram
μm	Micrometer
UT	Un boiled tomato
VLDL	Very low-density lipoproteins
WG	Weight gain
wks	Weeks
YCS	Yolk color score
YI	Yolk index

5. SUMMERY AND CONCLUSIONS

The present study was carried out at Inshas Poultry Breeding Research Station, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Giza, Egypt, during the period from November 2015 to February 2016. The chemical analysis was carried out at the Laboratories of Animal production Research Institute, Agriculture Research Center, Ministry of Agriculture.

The experimental design of this work was planned to study the effect of adding different levels of lutein powder pure (LP), dried tomato pulp (DTP) and dried sweet red pepper (DSRP), as natural color additives supplementations as feed additives on some productive and reproductive performances of Silver Montazah (SM) hens as a local strain for meat and egg production.

A total number of 162 laying hens and 36 cocks of SM local strain, 40 weeks old, were chosen from the farm flock and used in this experiment. All selected birds were randomly distributed into 18 treatment groups equal in number (9 hens and two cocks / each treatment). Cocks were used to collect semen and artificially inseminated to hens for two times per week. Laying hens of each group were of nearly an equal average body weight and similar average daily egg production and were not statistically different. All birds of the experimental treatments were individually housed in wire-caged batteries (45×30×35cm), and kept under the same managerial hygienic environmental conditions. and The photoperiod during the experimental period was fixed at 16 hours daily.

A 2x3x3 factorial arrangement design was used in this experiment including two levels of LP (0 and 30 mg/kg diet), three levels of DTP

(0, 15 and 30 g/kg diet), three levels of DSRP (0, 2 and 4 g/kg diet) and their interactions were tested for 9 weeks.

Birds were fed a basal laying diet formulated to cover the nutrient requirements of SM laying hens recommendations according to **Feed Composition Tables For Animal And Poultry Feedstuffs used in Egypt (2001)**. Layers were fed either the basal diet with no supplementation (control) or supplemented with 30 mg lutein powder (LP) /kg diet, 15 & 30 g dried tomato pulp (DTP) /kg diet and 2 & 4 g dried sweet red pepper (DSRP)/kg diet. Hens were fed ad-libitum and the fresh water was available all the time during the experimental period.

Birds of each experimental group were individually weighed to the nearest gram at the start of the experiment, and then every three weeks during the experimental period (40, 43, 46 and 48 weeks of age), feed intake, feed conversion, egg production traits (egg production rate, egg weight and egg mass), egg quality traits, egg component weights and percentages, fertility and hatchability were estimated or calculated. At the end of the experimental period, a slaughter test was performed to determine carcass measurements and blood serum constituents were measured. Economical efficiency of egg production was calculated.

Results obtained could be summarized as follows:

Average live body weight of layers at the end of the experimental period was significantly (P \leq 0.05) affected by dietary LP levels, whereas, dietary DTP, DSRP levels had no significant effect on average live body weight of hens. The heavier live body weight was attained by layers fed 0 mg / kg diet LP and layers fed 30 g / kg diet DTP recorded the average higher LBW. While, layers fed the 0 g / kg diet DSRP showed the higher average LBW.

Dietary LP and DTP levels had significant (P \leq 0.01) effect on average daily feed intake of layers. However, the higher average of daily feed intake was recorded by hens fed dietary 0 mg/ kg diet LP, 0 g/ kg diet DTP level and 2 g / kg diet DSRP levels. Dried sweet red pepper levels had no significant effect on average daily FI of layers during most of experimental periods. The higher average daily FI was shown by layers fed 2 g / kg diet DSRP level.

No significant differences were found in average feed conversion of layers attributed to the dietary DTP and DSRP levels. However, the best average FCR values (3.37g feed/g egg mass) was recorded by layers fed the diet contained 0 mg/kg diet lutein powder level.

Dietary LP and DTP levels had significant (P ≤ 0.01) effects on average egg production (EP) rate, egg weight and egg mass of layers at the end of the experimental period. While, dietary DSRP levels had no significant effect on averages of egg production rate and egg mass of layers at the end the experimental period (40-48 weeks of age). The higher averages of egg production rate and egg mass were recorded by layers fed the diet of 0 mg/kg diet LP, 30 g/kg diet DTP and 2 g/kg diet DSRP levels, while, the higher average of egg weight was recorded by hens fed the dietary 0 mg/kg diet LP, 30 g/kg diet DTP and 0 g/kg diet DSRP levels .

Averages of egg quality traits (egg shape index, egg yolk index, egg albumen index and Haugh unit) at the end of the experimental period were not significantly affected by either dietary LP, DTP or DSRP levels except shape index which was significantly (P \leq 0.01) affected by LP level and egg yolk index which was significantly (P \leq 0.01) affected by DSRP level.

Dietary supplementation of LP, DTP and DSRP showed significant ($P \le 0.01$) effect on yolk color score at all the different experimental periods. Roche yolk color fan score increased with increasing the rate of LP, DTP and DSRP levels in the diet of laying hens.

Inclusion of LP, DTP and DSRP in the diet showed no significant effect on all averages of egg component weights and percentages of layers at 48 weeks of age, except average egg yolk weight and albumen weight which were significantly (P \leq 0.05 and P \leq 0.01 respectively) affected by feed LP supplementation. Also, DSRP levels had significant (P \leq 0.05) effect on albumen weight and shell percentage of layers at 48 weeks of age. While, shell thickness showed no significant effect on all the different experimental periods by all additives levels supplementation.

Average fertility percentages were significantly ($P \le 0.01$) affected by dietary LP, DTP and DSRP levels supplementation. The higher average of fertility percentage was recorded by hens fed 30 g DTP/kg diet.

Dietary DTP levels had significant ($P \le 0.05$) effects on averages of hatchability of total eggs set percentages. The higher averages of hatchability percentage of total eggs set were shown by layers fed 30 g DTP/kg diet.

Averages of hatchability percentage of fertile eggs were not significantly affected by either dietary DTP or DSRP levels. While, LPl levels had significant (P \leq 0.01) effect on hatchability of fertile eggs percentage. The higher hatchability percentages were detected in hens fed 30 mg LP/kg diet level.

Lutein powder and DSRP levels supplementation had no significant effect on all carcass traits weights and percentages estimated for layers. Absolute carcass and total edible parts weights or percentages, of layers were significantly ($P \le 0.05$) increased by dietary DTP levels. The higher absolute carcass and edible parts weights or percentage were found in layers fed 30 g DTP/kg diet.

Serum triglycerides, cholesterol, LDL and total lipids were significantly($P \le 0.05$) affected by dietary 30 mg LP/kg diet level. Whereas, allserum parameters estimated were significantly ($P \le 0.05$) affected by dietary DTP levels except total lipids only. Also, all serum parameters estimated were significantly ($P \le 0.05$) affected by dietary DSRP levels except albumen, A/G ratio, total lipids and liver function (ALT).The best value of total protein, albumen, globulin, A/G ratio, triglycerides, cholesterol and LDL were recorded when increased levels of LP or DTP and DSRP in the diet of laying hens.

Diets contained 0 mg LP /kg diet, 0 g DTP /kg diet and 4 g DSRP/kg diet levels recorded the higher (best) relative economical efficiency percentage for egg production .

General conclusion and recommendations:

On the light of the present results, it could be concluded that:

- 1-Using 30 mg LP/kg diet level in laying hens diets increased hatchability percentages.
- 2-Using 0mg / kg diet LP, 30 g / kg diet DTP and 2 g / kg diet DSRP levels in lying hens diets increased live body weight, average of egg weight, averages of egg production rate and egg mass, fertility percentage, averages of total eggs set percentages and absolute carcass and edible parts weights or percentages
- 3-Using 2 g / kg diet DSRP level in lying hens diets increased the average daily feed intake .
- 4- yolk color score increased with increasing the rate of LP, DTP and DSRP levels in the diet of laying hens.
- 5- Diets contained 0mg LP/kg diet, 0g DTP /kg diet and 4 g DSRP /kg diet levels recorded the higher (best) relative economic efficiency percentage for egg production .