IMPROVING THE FRUIT YIELD AND QUALITY OF CUCUMBER BY GRAFTING ONTO DIFFERENT ROOTSTOCKS UNDER SALINE CONDITIONS

By

SAUDI MOHAMMED MOHAMMED ABD-EI-LATIF

B.Sc. Agric. Sc., Agriculture (General), El- Minia University, 2002M.Sc. Agric. Sc., Vegetable Crops, Cairo University, 2011

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

2019

ABSTRACT

Saudi Mohammed Mohammed Abd-El-Latif: Improving the Fruit Yield and Quality of Cucumber by Grafting onto Different Rootstocks under Saline Conditions. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2019.

The experiments was carried out to investigate the possibility of utilizing grafting technique on different rootstocks for ameliorating the negative effects of high salinity of irrigation water on vegetative growth, yield, fruits quality and chemical composition of cucumber plants in two successive seasons of 2014/2015 and 2015/2016 at Elbrolos Farm, Kafr Elsheikh Governorate. The effect of grafting on cucumber plants was studied using parameters of plant growth, flowering, fruit yield and quality, beside nutrient contents of cucumber plant (F1hybrid Eshrak as scion) grafted on five different rootstocks such as Shintoza, Ferro, pumpkin, winter squash and bottle gourd. The results showed that grafted cucumber plants on Shintoza led to significant improvement in stem length, number of branches, number of leaves, leaf area, fruit fresh weight, number of fruits and total yield. The fruits obtained of Shintoza had higher values of T.S.S, firmness, crispness, taste and chewing followed by grafted cucumber plants on cv. Ferro. However, grafting had no significant effect on potassium content of fruit in both seasons. The highest total yield of fruit was obtained by grafting cucumber plants on Shintoza rootstock followed by grafting cucumber plants on cv. Ferro. The increase in total yield due to using the two rootstocks was about 130 % and 73 %, respectively in the first season and 160% and 147 %, respectively in the second season as compared with ungrafted cucumber plants.

Keywords: Cucumis sativus, salt stress, grafting, rootstocks

CONTENT

	Page
1.INTRODUCTION	1
2.REVIEW OF LITERATURE	3
2.1. Effect of salinity on vegetative growth characteristics	3
2.2. Effect of grafting on plant flowering and fruit set percentage	
under saline conditions	3
2.3. Effect of grafting on vegetative growth characteristics	4
2.3.1. Plant length	4
2.3. 2. Number of branches per plant	5
2.3.3 .Number of leaves per plant	6
2.3.4. Plant fresh weight	7
2.3. 5. Stem diameter	8
2.3.6. Chlorophyll content	8
2.3.7. Plant dry weight	9
2.3.8. Leaf area	9
2.4. Effect of grafting on chemical composition of plant foliage	9
2.4.1. Sodium concentration in shoots	10
2.4.2. Sodium concentration in roots	11
2.4.3. Chloride concentration in shoots	12
2.4.4. Chloride concentration in roots	12
2.4.5. Leaf relative water content	13
2.4.6. Membrane permeability	13
2.5. Effect of grafting on fruits yield and its components	13
2.5.1. Fruit number per plant	13
2.5.2. Average fruit weight per plant	14
2.5.3. Total yield per plant	15
2.6. Effect of grafting on fruit quality	17
2.6.1. Fruit firmness	17
2.6.2. Total Soluble Solids (T.S.S.)	18
3. MATERIALS AND METHODS	21

	Page
3.1. Experimental layout	21
3.2. Plant materials and experimental procedures (seedlings	
Production)	21
3.3. Transplanting	23
3.4. Soil and water analysis	24
3.5. Data recorded	25
3.5.1. Plant vegetative growth characteristics	25
3.5.2. Flowering characteristics	26
3.5.3. Chemical analysis of plant	26
3.5.3.1. Sodium and chloride content of shoot and root	26
3.5.2.2. Leaf relative water content	26
3.5.3.3. Determination of membrane permeability	27
3.5.3.4. Determination of Proline	27
3.5.3.5. Total chlorophyll reading	28
3.5.3.6. Determination of the Na+, K+ and Cl- concentrations in	
fruit	28
3.5.4. Yield and its components	28
3.5.4. 1. Average fruit weight	28
3.5.4.2. Average fruit number per plant	28
3.5.4.3. Average total yield	28
3.5.5. Fruit quality properties	28
3.5.5.1. Fruit firmness	
3.5.5.2. Total soluble solids (T.S.S.)	
3.6. Statistical analysis procedures	29
RESULTS AND DISCUSSION	30
4.1. Effect of grafting on the successful grafting percentage of	
cucumber	30
4.2. Anatomical examinations	31
4.2.1. Primary structures of scion	31
4.2.2. Primary structures of rootstocks	32
4.2.3. Anatomical features of successful grafting	32

	Page
4.2.3.1. Physiological compatibility between stock and scion	33
4.2.3.2. Cell division in both scion and stocks in grafting union.	34
4.2.3.3. Differentiation of callus tissues	36
4.2.3.4. Secondary growth of scion and rootstocks	38
4.2.4. Anatomical features of grafting failure	39
4.2.4.1. Technique procedures	39
4.2.4.2. Adventitious lateral root formation in the scion	44
4.3. Effect of grafting on flowering and fruit setting percentage of	
cucumber	48
4.3. 1. Number of days to first flower	48
4.3. 2. Number of flowers per plant	49
4.3.3. Fruit setting percentage	49
4.4. Effect of grafting on vegetative growth characteristics of	
cucumber	50
4.4. 1. Stem length and stem diameter	50
4.4. 2. Branches and leaves number	51
4.4.3. Leaf area, fresh and dry weight of leaves	52
4.4. 4. Fresh and dry weight for stems and roots	53
4.4.5. Fresh and dry weight and dry matter (%) for foliage and	
root dry matter (%)	54
4.5. Effect of grafting on fruit yield and its components of	
cucumber	56
4.5.1. Average fruit weight	57
4.5.2. Fruits number per plant	58
4.5.3. Total yield per plant and per feddan	58
4.6. Effect of grafting on chemical composition of plant foliage of	
cucumber	60
4.6.1. Leaf relative water content	60
4.6.2. Membrane permeability (%)	61
4.6.3. Proline content	61
4.6. 4. Chlorophyll reading (SPAD)	62

	Page
4.6.5. Sodium concentration in shoots	63
4.6.6. Sodium concentration in roots	65
4.6.7. Chloride concentration in shoots	66
4.6.8. Chloride concentration in roots	
4.7. Effect of grafting on physical and chemical	
fruit characteristics	66
4.7.1. Effect of grafting on physical fruit characteristics	66
4.7.1.1. Fruit length, fruit diameter and fruit volume	66
4.7.1.2. Fruit firmness	67
4.7.1.3. Total soluble solids (T.S.S.)	68
4.7.1.4. Taste goldsmith in cucumber fruit	69
4.7.1.5. Crispness in cucumber fruit	70
4.7.1.6. Chewing in cucumber in cucumber fruit	
4.7.2. Effect of grafting on chemical fruit characteristics	
4.7.2.1. Potassium percentage in cucumber fruit	
4.7. 2. 2. Sodium percentage in cucumber fruit	
SUMMARY AND CONCLUSION	73
REFERENCES	77
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table 1	Water analyses of the experimental farm	24
Table 2	Mechanical analysis of the soil in the experimental	
	farm	24
Table 3	Chemical properties of soil samples before and	
	after Planting	24
Table 4	Effect of graft combinations on survival	
	percentage of cucumber for seasons (2014/2015	
	and 2015/2016)	31
Table 5	Effect of graft combinations on number of (days	
	to first flower, flowers per plant), fruit set	
	percentage and yellow leaves percentage for	
	seasons (2014/2015 and 2015/2016)	49
Table 6	Effect of graft combinations on stem length,	
	number of branches, number of eaves and stem	
	diameter of cucumber for seasons (2014/2015 and	
	2015/2016)	51
Table 7	Effect of graft combinations on leaf area, fresh	
	and dry weight per cucumber leaves for seasons	
	(2014/2015 and 2015/2016)	53
Table 8	Effect of graft combinations on steam fresh and	
	dry weight and root fresh and dry weight of	
	cucumber for seasons (2014/2015 and	
	2015/2016)	54
Table 9	Effect of graft combinations on fresh and dry	
	weight of (%)foliage, foliage dry matter (%) and	
	root dry matter per plant of cucumber for seasons	
	(2014/2015 and 2015/2016)	56

Table No.		Page
Table 10	Effect of graft combinations on fruit fresh weight,	
	number of fruits and total yield of cucumber for	
	seasons (2014/2015and 2015/2016)	57
Table 11	Effect of graft combinations on leaf relative water	
	content (%), membrane permeability, free praline	
	and chlorophyll reading of cucumber for seasons	
	(2014/2015 and 2015/2016)	61
Table 12	Effect of graft combinations on sodium and	
	chloride in shoots and roots of cucumber for	
	seasons (2014/2015 and 2015/2016)	64
Table 13	Effect of grafting on fruit length, fruit diameter	
	and fruit volume of cucumber plant for seasons	
	(2014/2015 and 2015/2016)	67
Table 14	Effect of graft combinations on firmness and TSS	
	of fruit cucumber for seasons (2014/2015 and	
	2015/2016)	68
Table 15	Some physical characteristics of fruits taste	
	goldsmith, crispness and chewing as affected by	
	grafting on different cucurbitaceous rootstock	70
Table 16	Effect of graft combinations on potassium (%) and	
	sodium (%) in fruit of cucumber for seasons	
	(2014/2015 and 2015/2016)	72

LIST OF FIGURES

Fig.		Page
(1)	Hole insertion grafting	23

LIST OF PHOTOES

Photo		Page
1	Cross – section showing primary bicollateral bundles of	
	scion, 30 days after grafting	33
2	Lateral root formation in scion, Vascular bundles, and	
	callus building in both scion and rootstock, 30 days after	
	grafting	35
3	Transactions through grafting union of different	
	rootstocks, 30 days after grafting	37
4	Differentiation of phloem element from the callus of	
	rootstock Ferro	38
5	New developed secondary xylem element (arrows) and	
	secondary growth of scion bundles. Barrier of necrotic	
	cells prevents callus connection between rootstock and	
	scion (Bottle gourd)	40
6	Grafting failure showing necrotic cells gaping (30	
	daysafter grafting) (Bottle gourd)	41
7	Grafting success showing well connection between	
	scionand rootstock, developingnew phloem element	
	fromcallus(30 days after grafting) (shintoza)	41
8	Secondary growth and development of new	
	conductivetissues inscion (30 days after grafting)	
	(ferro)	42
9	Across section through grafting union showing	
	epidermis of scion facing callus of rootstock. (squash)	
	30 days after grafting	43
10	Illustrates activities of accessory cambium and	
	differentiation secondary xylem facing primary xylem	
	of rootstock bundles of Ferro. (30 days after	
	grafting)	43

Photo		Page
11	Epidermis of scion prevent callus building and	
	connection. with Rootstock (Pumpkin) (30 days after	45
	grafting)	
12	Callus building in both scion and rootstock (Pumpkin)	
	(30 days after grafting)	46
13	Adventitious lateral root in front of rootstock (30 days	
	after grafting) pumpkin	47