

Benha University Faculty of Agriculture Plant Protection Department

Use of some safe materials for controlling some stored product insects

By Eman Lotfy Sadek Ayad

B.Sc. Faculty of Agric. Benha University (2004) M.Sc. (Economic Entomology), Fac. Agric., Benha University Egypt, 2012.

Thesis

Submitted in Partial Fulfillment of the Requirements For the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Economic Entomology) Department of Plant Protection Faculty of Agriculture Benha University

2019

CONTENTS

Title	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
1- Effect of ozone and argon gases on stored product insects:	4
2- Effect of botanical oils on stored product insects:	16
3-The combined action of natural materials and controlled	25
atmospheres against stored product insects:	
3. MATERIALS AND METHODS	31
3.1. Test insect:	31
3.1.1. Rearing of insect cultures:	31
3.2. Controlled atmosphere (CA):	32
3.2.1 Gases used:	32
3.2.1.1. Ozone gas:	32
3.2.1.2. Bioassay tests of ozone gas:	34
3.2.2. Argon gas:	34
3.2.2.1. Bioassay tests of argon gas:	36
3.3. Botanical oils used:	37
Bioassay tests:	37
3.3.1. Botanical oils treatment:	37
3.4. Controlled atmospheres (argon) and botanical oils mixtures:	38
5.Calculation of inhibition	39
6. Statistical analysis	39

4. Results and Discussions	41
4.1- Mortality effect of the tested ozone gas against Ephestia	41
<i>cautella</i> and <i>Oryzaephilus surinamensis</i> at $30 \pm 1^{\circ}$ C and $65\pm5\%$	
RH.	
4.1.1.Effect of ozone gas against <i>E.cautella</i>	41
4.1.1.1. Larvae	41
4.1.1. 2. Eggs	41
4.1.2. Effect of ozone gas against O. surinamensis	44
4.1.2.1. Adults	44
4.1.2.2. Larvae	44
4.2. Effect of the controlled atmospheres (CA) containing various	50
concentrations of argon (AR) against E. cautella and O.	
surinamensis at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.	
4.2.1. Effect of argon gas against <i>E. cautella</i>	50
4.2.1.1. Larvae	50
4.2.1.2. Eggs	54
4.2.2. Effect of argon gas against O. surinamensis	60
4.2.2.1. Adults	60
4.2.2.2. Larvae	61
4.3. Effect of some botanical oils against E. cautella and O.	69
surinamensis at 30 & $20 \pm 1^{\circ}$ C and 65 \pm 5% RH.	
4.3.1. Larvae of <i>E. cautell</i>	69
4.3.1.1.Camphor oil	69
4.3.1.2. chamomile oil	70
4.3.1.3. Onion oil	71

4.3.1.4. Bitter almond oil	72
4.3.2. Eggs of <i>E. cautell.</i>	75
4.3.2.1.Camphor oil	75
4.3.2.2. Chamomile oil	76
4.3.2.3. Onion oil	77
4.3.2. 4. Bitter almond oil	78
4.3.3. Adults of <i>O. surinamensis</i>	81
4.3.3.1.Camphor oil	81
4.3.3.2. Chamomile oil	82
4.3.3.3. Onion oil	83
4.3.3.3. Bitter almond oil	84
4.3.4. Larvae of <i>O. surinamensis</i>	87
4.3.4.1.Camphor oil	87
4.3.4.2. Chamomile oil	88
4.3.4.3. Onion oil	89
4.3.4.4. Bitter almond oil	90
4.4. The combined action of the botanical oils and argon against	94
larvae and eggs of E. cautella and adults and larvae of O.	
surinamensis at 30±1°C and 65±5% RH.	
4.4.1. Effect of LC_{50} of botanical oils and LT_{50} of 50% argon gas	94
mixtures against the larvae of <i>E. cautella</i>	
4.4.1.1 Camphor oil	94
4.4.1.2 Chamomile oil	96
4.4.1.3 Onion oil	97
4.4.1.4 Bitter almond oil	99

4.4.2. Effect of LC_{50} of botanical oils and LT_{50} of 50% argon gas	100
mixtures against the eggs of E. cautella	
4.4.2.1 Camphor oil	100
4.4.2.2 Chamomile oil	102
4.4.2.3 Onion oil	103
4.4.2.4 Bitter almond oil	104
4.4.3. Effect of LC_{50} of botanical oils and LT_{50} of 50% argon gas	106
mixtures against the adults of O. surinamensis	
4.4.3.1. Camphor oil	106
4.4.3.2 Chamomile oil	107
4.4.3.3 Onion oil	109
4.4.3.4 Bitter almond oil	111
4.4.4. Effect of LC_{50} of botanical oils and LT_{50} of 50% argon gas	113
mixtures against the larvae of O. surinamensis:	
4.4.4.1 Camphor oil	113
4.4.4.2 Chamomile oil	115
4.4.4.3 Onion oil	117
4.4.4.4 Bitter almond oil	119
5. Summary	122
6. References	135
7. Arabic Summary	-

LIST OF TABLES

	Table Title	Page No.	
1	English name, Plant species and their Family used in the experiments.	37	
2	The efficacy of 300ppm ozone gas against <i>E. cautella</i> larvae at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	40	
3	The efficacy of 300ppm ozone gas against <i>E. cautella</i> eggs at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	41	
4	Lethal time values and confidence limits for the larvae of <i>E. cautella</i> at five exposure period of ozone.	42	
5	The efficacy of 300ppm ozone gas against O . <i>surinamensis</i> adults at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	44	
6	The efficacy of 300ppm ozone gas against O . <i>surinamensis</i> larvae at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	45	
7	Lethal time values and confidence limits for the adults of <i>O. surinamensis</i> at five exposure period of ozone.		
8	Lethal time values and confidence limits for the larvae of <i>O. surinamensis</i> at five exposure period of ozone.	47	
9	The efficacy of argon gas at 25% against <i>E. cautella</i> larvae at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	51	
10	The efficacy of argon gas at 50% against <i>E. cautella</i> larvae at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	52	
11	The efficacy of argon gas at 75% against <i>E. cautella</i> larvae at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	53	
12	The efficacy of argon gas at 25% against <i>E. cautella</i> eggs at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	54	
13	The efficacy of argon gas at 50% against E. cautella eggs	55	

at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.

-		
14	The efficacy of argon gas at 75% against <i>E. cautella</i> eggs at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.	55
15	Lethal time values and confidence limits for larvae of <i>E</i> . <i>cautella</i> and eggs, exposed to CA of 25% argon at 30 ± 1 °C and 65 ± 5 %RH.	57
16	Lethal time values and confidence limits for larvae of <i>E</i> . <i>cautella</i> and eggs, exposed to CA of 50% argon at 30 ± 1 °C and 65 \pm 5 % RH.	58
17	Lethal time values and confidence limits for larvae of <i>E</i> . <i>cautella</i> and eggs, exposed to CA of 75% argon at 30 ± 1 °Cand 65 ± 5 % RH.	59
18	The efficacy of argon gas against <i>O. surinamensis</i> adults at 30±1°C and 65±5%RH.	60
19	The efficacy of argon gas at 25% against <i>O. surinamensis</i> larvae at 30±1 °C and 65±5%RH.	62
20	The efficacy of argon gas at 50% against <i>O. surinamensis</i> larvae at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.	63
21	The efficacy of argon gas at 75% against <i>O. surinamensis</i> larvae at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.	64
22	Lethal time values and confidence limits for the adults of O. surinamensis and larvae, exposed to CA of 25% argon at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.	65
23	Lethal time values and confidence limits for the adults of O. surinamensis and larvae, exposed to CA of 50% argon at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.	66
24	Lethal time values and confidence limits for the adults of	67

O. surinamensis and larvae, exposed to CA of 75% argon	
at 30 ±1°C and 65±5% RH.	

		i	
25	Efficacy of camphor botanical oil against E. cautella	70	
_	larvae at 30° C & 20° C and $65\pm5\%$ RH.	~	
26	Efficacy of chamomile botanical oil against E. cautella	71	
20	larvae at 30° C & 20° C and $65\pm5\%$ RH.	/ 1	
27	Efficacy of onion botanical oil against E. cautella larvae	72	
27	at 30°C & 20° C and 65±5%RH.	12	
28	Efficacy of bitter almond botanical oil against E. cautella	73	
20	larvae at 30° C & 20° C and $65\pm5\%$ RH.	73	
	Lethal concentration values and confidence limits of		
29	various botanical oils for the larvae of E. cautella at two	74	
	tested temperatures.		
20	Efficacy of camphor botanical oil against E. cautella	7(
30	eggs at 30° C & 20° C and $65\pm5\%$ RH.	76	
31	Efficacy of chamomile botanical oil against E. cautella	77	
51	eggs at 30° C & 20° C and $65\pm5\%$ RH.	77	
32	Efficacy of onion botanical oil against E. cautella eggs at	78	
32	30° C & 20° C and $65\pm5\%$ RH.	/ð	
33	Efficacy of bitter almond botanical oil against E. cautella	70	
33	eggs at 30° C & 20° C and $65\pm5\%$ RH.	79	
	Lethal concentration values and confidence limits of		
34	various botanical oils for eggs of E. cautella at two	80	
	tested temperatures.		
25	Efficacy of camphor botanical oil against O.	02	
35	surinamensis adults at 30°C & 20°C and 65±5%RH.	82	
26	Efficacy of chamomile botanical oil against O.	02	
36	surinamensis adults at 30°C & 20°C and 65±5%RH.	83	
27	Efficacy of onion botanical oil against O. surinamensis	<u></u>	
37	adults at 30° C & 20° C and $65\pm5\%$ RH.	84	

38	Efficacy of bitter almond botanical oil against O .	85
	surinamensis adults at 30°C & 20°C and 65±5%RH.	
	Lethal concentration values and confidence limits of	
39	various botanical oils for the adults of O. surinamensis at	86
	two tested temperatures.	
40	Efficacy of camphor botanical oil against O.	
40	surinamensis larvae at 30°C & 20°C and 65±5%RH.	88
41	Efficacy of chamomile botanical oil against O.	89
41	surinamensis larvae at 30°C & 20°C and 65±5%	09
42	Efficacy of onion botanical oil against O. surinamensis	00
42	larvae at 30° C & 20° C and $65\pm5\%$ RH.	90
42	Efficacy of bitter almond botanical oil against O.	01
43	surinamensis larvae at 30°C & 20°C and 65±5%RH.	91
	Lethal concentration values and confidence limits of	
44	various botanical oils for the larvae of O. surinamensis	92
	at two tested temperatures.	
	The efficacy of argon gas at 50% and camphor oil	
45	mixtures against E. cautella larvae at 30°C and 65	95
	±5%RH.	
	The efficacy of argon gas at 50% and chamomile oil	
46	mixtures against E. cautella larvae at 30°C and 65	96
	±5%RH.	
47	The efficacy of argon gas at 50% and onion oil mixtures	98
4/	against <i>E. cautella</i> larvae at 30°C and 65 \pm 5%RH.	70
	The efficacy of argon gas at 50% and bitter almond oil	
48	mixtures against E. cautella larvae at 30°C and 65	99
	±5%RH.	

		i
49	The efficacy of argon gas at 50% and camphor oil mixtures against <i>E. cautella</i> eggs at 30°C and 65	101
	±5%RH.	
	The efficacy of argon gas at 50% and chamomile oil	
50	mixtures against E. cautella eggs at 30°C and 65	102
	±5%RH.	
51	The efficacy of argon gas at 50% and onion oil mixtures	103
51	against <i>E. cautella</i> eggs at 30° C and $65 \pm 5\%$ RH.	105
	The efficacy of argon gas at 50% and bitter almond oil	
52	mixtures against E. cautella eggs at 30°C and 65	105
	±5%RH.	
	The efficacy of argon gas at 50% and camphor oil	
53	mixtures against O. surinamensis adults at 30°C and 65	106
	±5%RH.	
	The efficacy of argon gas at 50% and chamomile oil	
54	mixtures against O. surinamensis adults at 30°C and 65	108
	±5%RH.	
55	The efficacy of argon gas at 50% and onion oil mixtures	110
	against <i>O. surinamensis</i> adults at 30° C and $65 \pm 5\%$ RH.	110
	The efficacy of argon gas at 50% and bitter almond oil	
56	mixtures against O. surinamensis adults at 30°C and 65	112
	±5%RH.	
57	The efficacy of argon gas at 50% and camphor oil	
	mixtures against O. surinamensis larvae at 30°C and 65	114
	±5%RH.	
58	The efficacy of argon gas at 50% and chamomile oil	116
	mixtures against O. surinamensis larvae at 30°C and 65	

	±5%RH.	
59	The efficacy of argon gas at 50% and onion oil mixtures	118
39	against O. surinamensis larvae at 30° C and $65 \pm 5\%$ RH.	110
	The efficacy of argon gas at 50% and bitter almond oil	
60	mixtures against O. surinamensis larvae at 30°C and 65	120
	±5%RH.	

LIST OF FIGURES

Figure NO.	Figure Title	Page NO.
1	Ozone apparatus (outside)	33
2	Ozone apparatus (inside)	33
3	Recirculation of argon	35
4	Oxygen Analyzer	36
5	Mortality of larvae of <i>E. cautella</i> after 10 days post treatment when exposed to five exposure period of	42
	ozone.	
6	Mortality of eggs of <i>E. cautella</i> when exposed to five exposure period of ozone.	43
7	Median lethal time of ozone at 300ppm on larvae of <i>E. cautella</i> when exposed to five exposure period of ozone.	43
8	Mortality of adults of <i>O. surinamensis</i> after 12 days post treatment when exposed to five exposure period of ozone.	48
9	Mortality of larvae of <i>O. surinamensis</i> after 10 days post treatment when exposed to five exposure period of ozone.	49
10	Median lethal time of ozone at 300ppm on the adults of <i>O. surinamensis</i> when exposed to five exposure period of ozone.	49
11	Median lethal time of ozone at 300ppm on the larvae of <i>O. surinamensis</i> when exposed to five exposure period of ozone.	50
12	Mortality of larvae of <i>E. cautella</i> after 10 days when exposed to controlled atmospheres containing	53

argon concentrations at $30 \pm 1^{\circ}$ C.

13	Mortality of eggs of E. cautella when exposed to	
	controlled atmospheres containing argon	56
	concentrations at $30 \pm 1^{\circ}$ C.	
	Median lethal times of argon at three tested	
14	concentrations on larvae of E. cautella after 3 days	59
	post treatment and eggs, at $30 \pm 1^{\circ}$ C.	
	Mortality of adults of O. surinamensis when	
15	exposed to controlled atmospheres containing argon	61
	concentrations at $30 \pm 1^{\circ}$ C.	
	Mortality of larvae of O. surinamensis when	
16	exposed to controlled atmospheres containing argon	64
	concentrations at $30 \pm 1^{\circ}$ C.	
	Median lethal times of argon at three tested	
17	concentrations on adults of O. surinamensis and	68
	larva after 3 days post treatment at $30 \pm 1^{\circ}$ C.	
	Median lethal concentrations of some botanical oils	
18	for the larvae of <i>E. cautella</i> at $30\&20 \pm 1^{\circ}C$ after	75
	10 days post treatment.	
19	Median lethal concentrations of some botanical oils	01
	for the eggs of <i>E. cautella</i> at $30\&20 \pm 1^{\circ}C$.	81
20	Median lethal concentrations of some botanical oils	
	for the adults of O. surinamensis at 30&20±1°C	87
	after 10 days post treatment.	
21	Median lethal concentrations of some botanical oils	
	for the larvae of O. surinamensis at $30\&20 \pm 1^{\circ}C$	93
	after 10 days post treatment.	

r		
22	Larval mortality of <i>E. cautella</i> when exposed to mixtures LC_{50} camphor oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}C$.	95
23	Larval mortality of <i>E. cautella</i> when exposed to mixtures LC_{50} chamomile oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}C$.	97
24	Larval mortality of <i>E. cautella</i> when exposed to mixtures LC_{50} onion oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}$ C.	99
25	Larval mortality of <i>E. cautella</i> when exposed to mixtures LC_{50} bitter almond oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}$ C.	100
26	Mortality of eggs of <i>E. cautella</i> when exposed to mixtures LC_{50} camphor oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}C$.	101
27	Mortality of eggs of <i>E. cautella</i> when exposed to mixtures LC_{50} chamomile oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}C$.	103
28	Mortality of eggs of <i>E. cautella</i> when exposed to mixtures LC_{50} onion oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}$ C.	104

	Mortality of eggs of E. cautella when exposed to		
29	mixtures LC ₅₀ bitter almond oil and LT ₅₀ argon gas	105	
	at 50% concentrations compared with mortality of		
	each alone at $30 \pm 1^{\circ}$ C.		
	Mortality of adults of O. surinamensis when	107	
30	exposed to mixtures LC_{50} camphor oil and LT_{50}		
50	argon gas at 50% concentrations compared with		
	mortality of each alone at $30 \pm 1^{\circ}$ C.		
	Mortality of adults of O. surinamensis when	109	
31	exposed to mixtures LC_{50} chamomile oil and LT_{50}		
	argon gas at 50% concentrations compared with		
	mortality of each alone at $30 \pm 1^{\circ}$ C.		
	Mortality of adults of O. surinamensis when	111	
32	exposed to mixtures LC_{50} onion oil and LT_{50} argon		
52	gas at 50% concentrations compared with mortality		
	of each alone at $30 \pm 1^{\circ}$ C.		
	Mortality of adults of O. surinamensis when		
LT_{50} argon gas at 50% con	exposed to mixtures LC_{50} bitter almond oil and	113	
	LT_{50} argon gas at 50% concentrations compared		
	with mortality of each alone at $30 \pm 1^{\circ}$ C.		
	Larval mortality of <i>O. surinamensis</i> when exposed		
34	to LC_{50} camphor oil and LT_{50} argon gas at 50%	115	
	concentrations compared with mortality of each		
	alone at $30 \pm 1^{\circ}$ C.		

35	Larval mortality of <i>O. surinamensis</i> when exposed to mixtures LC_{50} chamomile oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at 30 ± 1°C.	117
36	Larval mortality of <i>O. surinamensis</i> when exposed to mixtures LC_{50} onion oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}C$.	119
37	Larval mortality of <i>O. surinamensis</i> when exposed to LC_{50} bitter almond oil and LT_{50} argon gas at 50% concentrations compared with mortality of each alone at $30 \pm 1^{\circ}$ C.	121

5. SUMMARY

The main objective of this work was:

- 1-Evaluate the efficacy of Ozone gas against the larvae and eggs of *Ephesti cautella* and the larvae and adults of *Oryzaephilus*. *surinamensis* at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.
- 2-Determination of effectiveness of controlled atmospheres of Argon (AR) against the larvae and eggs of *E. cautella* and the larvae and adults of *O. surinamensis* at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.
- 3. Evaluation of the efficacy of some botanical oils Camphor, Chamomile, Onion and Bitter almond oil against the larvae and eggs of *E. cautella* and the larvae and adults of *O. surinamensis* at two test temperatures 30 and $20\pm1^{\circ}$ C and $65\pm5\%$ RH.
- 4- The combined action of botanical oils and controlled atmospheres (AR + oil) against the larvae and eggs of *E. cautella* and the larvae and adults of *O. surinamensis* at $30 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH.
- 5.1. Mortality of the tested ozone gas against larvae and eggs of *E*. *cautella* and adults and larvae of *O*. *surinamensis* at $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH.

The results showed that the mortalities increased gradually by increasing each of exposure time to ozone gas and period after treatment against the larvae and eggs of *E. cautella* and adults and larvae of *O. surinamensis* at $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH. The susceptibility of the larvae, eggs of *E. cautella* and adults, larvae of *O. surinamensis*, showed that the eggs were more tolerance than larvae the adults of *O. surinamensis* were more tolerance than larvae at $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH.

For example:

The time required to obtain 50% mortality for the larvae and eggs of *E. cautella* and adults and larvae of *O. surinamensis* at $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH.

The larvae of E. cautella

The time required to obtain 50% mortality for the larvae of *E. cautella* exposed to ozone at 300 ppm at 30°C was 14.30 day, at 0.5h exposure period and 1.96 day at 4 hrs, exposure period.

The eggs of *E. cautella*

The time 0 to obtain 50% mortality for the eggs of *E. cautella* exposed to ozone at 300 ppm at 30°C was 2.08 hrs.

The adults of O. surinamensis

The time required to obtain 50% mortality for the adults of *O*. *surinamensis* exposed to ozone at 300 ppm at 30°C was 22.27 and 2.43 day at 1 and 4 hrs, respectively

The larvae of O. surinamensis

The time required to obtain 50% mortality for the larvae of *O*. *surinamensis* exposed to ozone at 300 ppm at 30°C was 21.39 and 2.18 day at 0.5 and 4 hrs, respectively.

5.2. Effect of the controlled atmospheres (CA) containing various concentrations of argon (AR) against *E. cautella* and *O. surinamensis* under $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH.

The results showed that increasing the argon concentration of the controlled atmospheres resulted in higher efficacy against the larvae and eggs of *E. cautella* and adults and larvae of *O. surinamensis*. The efficacy of various argon concentrations increased with increasing the exposure period. The susceptibility of the various *E. cautella* stages varied from insect stage to another the eggs were more tolerance than larvae and adults and larvae of *O. surinamensis* varied from insect stage to another the adults of *O. surinamensis* were more tolerance than larvae at $30 \pm 1^{\circ}$ C and $65\pm5\%$ RH.

The larvae and eggs of *E. cautella*

Using 25% of argon caused 50% mortalities (lethal time values) for the larvae were 3.26 day, while it was 3.98 day for the eggs.

Using 50% of argon caused 50% mortalities (lethal time values) for the larvae were 1.48day, while it was 3.35day for the eggs.

Using 75% of argon caused 50% mortalities (lethal time values) for the larvae 1.02 day, while it was 2.78day for the eggs.

The adults and larvae of O. surinamensis

Using 25% of argon caused 50% mortalities (lethal time values) for the adults was 5.33 day, while it was 1.78 day for the larvae.

Using 50% of argon caused 50% mortalities (lethal time values) for the adults was 3.90 day, while it was 1.29day for the larvae.

Using 75% of argon caused 50% mortalities (lethal time values) for the adults was3.34 day, while it was 0.83day for the larvae.

5.3. Effect of some botanical oils against *E. cautella* and *O. surinamensis* at 30 & 20 \pm 1°C and 65 \pm 5% RH.

In case of larvae of *E. cautella* and adults of *O .surnamensis*, a sample of 10g of artificial diet was separately mixed thoroughly with each oil at concentrations ranged between 3 - 15 % in petroleum ether.

In case of eggs of *E. cautella*, a sample of 10g of artificial diet was separately mixed thoroughly with each oil at concentrations ranged between 0.5 - 3 % in petroleum ether.

In case of larvae of O .*surnamensis*, a sample of 10g of artificial diet was separately mixed thoroughly with each oil at concentrations ranged between 0.125 - 1 % in petroleum ether.

The results showed that the mortality increased by increasing the botanical oil concentration, period of exposure and temperature.

The larvae of *E. cautella*

Camphor oil

The result indicated that the larval mortality of *E. cautella* at $30\&20 \pm 1^{\circ}C$ and $65 \pm 5\%$ RH, the mortality after 10 days post treatment at 5% (v/w) was 90.00% and 83.33% at 30°C and 20°C, respectively.

Chamomile oil

The result indicated that the larval mortality of *E. cautella* at $30\&20 \pm 1^{\circ}C$ and $65 \pm 5\%$ RH, the mortality after 10 days post treatment at 10% (v/w) was 96.66% and 86.66% at 30 °C and 20°C, respectively.

Onion oil

The result indicated that the larval mortality of *E. cautella* at $30\&20 \pm 1^{\circ}C$ and $65 \pm 5\%$ RH, the mortality after 10 days post treatment at 10% (v/w) was 93.33% and 83.33% at 30°C and 20°C, respectively.

Bitter almond oil

The result indicated that the larval mortality of *E. cautella* at $30\&20 \pm 1^{\circ}C$ and $65 \pm 5\%$ RH, the mortality after 10 days post treatment at 10% (v/w) was 90.00% and 80.00% at 30°C and 20°C, respectively.

The eggs of *E. cautella*

The results showed that the reduction increased by increasing the botanical oils concentration, period of exposure and temperature.

Camphor oil

The result indicated that the eggs mortality of *E. cautella* at $30\&20 \pm 1^{\circ}$ C and $65 \pm 5\%$ RH, the eggs mortality of *E. cautella* at concentration 0.5% (v/w) was 35.1 and 30.96% at 30.00°C and 20°C, respectively.

Chamomile oil

The result indicated that the eggs mortality of *E. cautella* at $30\&20 \pm 1$ °C and $65 \pm 5\%$ RH, the mortality at 3% (v/w) was 84.30% and 82.14% at 30 °C and 20 °C, respectively.

Onion oil

The result indicated that the eggs mortality of *E. cautella* at $30\&20 \pm 1$ °C and $65 \pm 5\%$ RH, the mortality at 3% (v/w) was 81.90% and 81.00% at 30 and 20°C, respectively.

Bitter almond oil

The result indicated that the eggs mortality of *E. cautella* at $30\&20 \pm 1^{\circ}C$ and $65 \pm 5\%$ RH, the eggs mortality of *E. cautella* at concentration 0.5% (v/w) was 22.80 and 17.85% at 30°C and 20°C, respectively.

The adults of O. surinamensis

The results showed that the mortality increased by increasing the botanical oils concentration, period of exposure and temperature.

Camphor oil

The result indicated that the adults mortality of *O. surinamensi* after 12 days post-treatment with various concentrations of Camphor

oil was between 21.66 -86.65% and 18.33 - 80.00% at 30, 20 °C, respectively. The estimated The LC₅₀ values 4.17 and 7.92% at 30°C and 20°C, respectively

Chamomile oil

The result indicated that the adults mortality of *O. surinamensi* after 12 days post-treatment with various concentrations of chamomile oil was between 30.00 -95.00% and 20.00 – 85.00 % at 30°C and 20 °C, respectively. The estimated The LC₅₀ values 7.94 and 12.86% at 30 and 20 °C, respectively

Onion oil

The result indicated that the adults mortality of *O. surinamensi* after 12 days post-treatment with various concentrations of onion oil was between 20.00 -90.00% and 18.33 - 78.33 % at 30, 20 °C, respectively. The estimated The LC₅₀ values 8.26 and 13.10% at 30 and 20 °C, respectively.

Bitter almond oil

The result indicated that the adults mortality of *O. surinamensi* after 12 days post-treatment with various concentrations of bitter almond oil was between 35.00 -100.00% and 20.00 – 86.65 % at 30°C and 20 °C, respectively. The estimated The LC₅₀ values 7.28 and 12.97% at 30°C and 20 °C, respectively.

The larvae of O. surinamensis

Camphor oil

The result indicated that the larval mortality of *O. surinamensi* after 10 days post-treatment with various concentrations of camphor oil was between 43.33-93.33% and 30.00 - 90.00% at 30°C and 20°C, respectively. The estimated The LC₅₀ values 0.19 and 0.26% at 30°C and 20 °C, respectively.

Chamomile oil

The result indicated that the larval mortality of *O. surinamensi* after 10 days post-treatment with various concentrations of chamomile oil was between 30.00-100.00% and 26.66 – 93.33% at 30°C and 20°C, respectively. The estimated The LC₅₀ values 0.25 and 0.28% at 30°C and 20 °C, respectively.

Onion oil

The result indicated that the larval mortality of *O. surinamensi* after 10 days post-treatment with various concentrations of onion oil was between 23.3-100% and 23.3 – 90% at 30°C and 20°C, respectively. The estimated The LC₅₀ values 0.30 and 0.31% at 30°C and 20 °C, respectively

Bitter almond oil

The result indicated that the larval mortality of *O. surinamensi* after 10 days post-treatment with various concentrations of bitter almod oil was between 30.00-93.33% and 23.33–86.66% at 30°C and 20 °C, respectively. The estimated The LC₅₀ values 0.26 and 0.32% at 30°C and 20 °C, respectively.

The camphor oil was the most effective against larvae of *E*. *cautella* and egg and adults of *O*. *surinamensis* and larvae followed by chamomile oil or onion oil and bitter almond oil were the least effective oils.

5.4. The combined action of the botanical oils and argon against larvae and eggs of *E. cautella* and adults and larvae of *O. surinamensis* at $30\pm1^{\circ}$ C and $65\pm5\%$ RH.

Controlled atmospheres of LT_{50} of 50% argon were tested (alone and in mixture) with LC_{50} of camphor, chamomile, onion and bitter

almond botanical oils, for *E. cautella* larvae and eggs and *O. surinamensis* adults and larvae at $30\pm 1^{\circ}$ C. Then experiments were conducted in circulatory glass apparatus in the laboratory at 30°C and 65 ±5 % R.H.

5.4.1. Larvae of E. cautella

5.4.1.1. Camphor

The combined action of camphor oil at LC₅₀ (3.73) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT₅₀ (0.68) day after 7 days post treatment against larvae of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 16.66% and 23.33% to 26.66% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 56.6% and 63.3% to 100% for oil, gas and oil+ gas, respectively.

5.4.1.2. Chamomile oil

The combined action of chamomile oil at LC₅₀ (7.33) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT₅₀ (0.68) day after 7 days post treatment against larvae of *E. cautella* at 30°C and $65\pm5\%$ RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 6.66% and 23.33% to 26.66% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 40.00% and 63.33% to 96.66% for oil, gas and oil+ gas, respectively.

5.4.1.3. Onion oil

The combined action of onion oil at LC_{50} (7.54) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon

at LT₅₀ (0.68) day after 7 days post treatment against larvae of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 6.66% and 23.33% to 30.00% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 56.66% and 63.33% to 100.00% for oil, gas and oil+ gas, respectively.

5.4.1.4 Bitter almond oil

The combined action of bitter almond oil at LC_{50} (7.69) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT_{50} (0.68) day after 7 days post treatment against larvae of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 10.00% and 23.33% to 23.33% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 53.33% and 63.33% to 90.00% for oil, gas and oil+ gas, respectively.

5.4.2. Eggs of E. cautella

5.4.2.1. Camphor oil

The combined action of camphor oil at LC₅₀ (0.89) % (v/w) under modified atmospheres (MA) of 50 % argon at LT₅₀ (3.35) day against egg of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C from 48.80% and 55.60% to 96.24% for oil, gas and oil+ gas, respectively.

5.4. 2.2. Chamomile oil

The combined action of chamomile oil at LC_{50} (1.09) % (v/w) under modified atmospheres (MA) of 50 % argon at LT_{50} (3.35) day

against egg of *E. cautella* at $30 \circ C$ and $65\pm5\%$ RH, general, improved mortality values than those achieved with each component separately at $30^{\circ}C$ from 52.20% and 55.60% to 96.24% for oil, gas and oil+ gas, respectively.

5.4.2.3. Onion oil

The combined action of onion oil at LC_{50} (1.25) % (v/w) under modified atmospheres (MA) of 50 % argon at LT_{50} (3.35) day against egg of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C from 52.20% and 55.60% to 96.24% for oil, gas and oil+ gas, respectively.

5.4.2.4. Bitter almond oil

The combined action of bitter almond oil at LC_{50} (1.33) % (v/w) under modified atmospheres (MA) of 50 % argon at LT_{50} (3.35) day of 50% argon against egg of *E. cautella* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C from 50.17% and 55.6% to 100% for oil, gas and oil+ gas, respectively.

5.4.3. Effect of LC_{50} of botanical oils under LT_{50} of 50% argon against the adult of *O. surinamensis*

5.4.3.1. Camphor oil

The combined action of camphor oil at LC_{50} (4.17) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT_{50} (3.90) day after 1day post treatment against the adults of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 0.00% and 40.00% to 76.65% for oil, gas and oil+ gas, respectively. While improved mortality values after 12 day post treatment were from 45.00% and 40.00% to 91.65% for oil, gas and oil+ gas, respectively

5.4.3.2. Chamomile oil

The combined action of chamomile oil at LC_{50} (7.94) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT_{50} (3.90) day after 1day post treatment against the adults of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 20.00% and 40.00% to 75.00% for oil, gas and oil+ gas, respectively. While improved mortality values after 12 day post treatment were from 60.00% and 40.00% to 90.00% for oil, gas and oil+ gas, respectively.

5.4.3.3. Onion oil

The combined action of onion oil at LC_{50} (8.26) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT_{50} (3.90) day after 1day post treatment against the adults of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 16.65% and 40.00% to 78.33% for oil, gas and oil+ gas, respectively. While improved mortality values after 12 day post treatment were from 48.33% and 40.00% to 96.66% for oil, gas and oil+ gas, respectively.

5.4.3.4. Bitter almond oil

The combined action of bitter almond oil at LC_{50} (7.87) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT_{50} (3.90) day of 50% argon after 1 day post against the adults of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 18.35% and 40.00% to 75% for oil, gas

and oil+ gas, respectively. While improved mortality values after 12 day post treatment were from 56.5% and 40% to 90% for oil, gas and oil+ gas, respectively.

5.4.4. Effect of LC_{50} of botanical oils under LT_{50} of 50% argon against the larvae of *O. surinamensis*:

5.4.4.1. Camphor oil

The combined action of camphor oil at LC₅₀ (0.19) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT₅₀ (0.69) day of 50% argon after 7 days post treatment against the larvae of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 13.33% and 16.66% to 26.66% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 50.00% and 36.66% to 100.00% for oil, gas and oil+ gas, respectively.

5.4.4.2. Chamomile oil

The combined action of chamomile oil at LC₅₀ (0.25) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT₅₀ (0.69) day of 50% argon after 7 days post treatment against the larvae of *O. surinamensis* at 30°C and 65±5%RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 16.66% and 16.66% to 23.3% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 46.66% and 36.66% to 96.66% for oil, gas and oil+ gas, respectively

5.4.4.3 Onion oil

The combined action of onion oil at $LC_{50}(0.30)$ % (v/w) after 10 days post treatment under modified atmosphere (MA) of 50 % argon at

LT₅₀ (0.69) day of 50% argon after 7 days post treatment against the larvae of *O. surinamensis* at 30°C and $65\pm5\%$ RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 13.33% and 16.66% to 30.00% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 46.66% and 36.66% to 100.00% for oil, gas and oil+ gas, respectively.

5.4.4.4. Bitter almond oil

The combined action of bitter almond oil at LC₅₀ (0.26) % (v/w) after 10 days post treatment under modified atmospheres (MA) of 50 % argon at LT₅₀ (0.69) day of 50% argon after 7 days post treatment against the larvae of *O. surinamensis* at 30°C and $65\pm5\%$ RH, general, improved mortality values than those achieved with each component separately at 30°C after 1 day post treatment from 16.66% and 16.66% to 26.66% for oil, gas and oil+ gas, respectively. While improved mortality values after 10 day post treatment were from 40.00% and 36.66% to 100.00% for oil, gas and oil+ gas, respectively.