

Suez Canal University Faculty of Veterinary Medicine Department of Biochemistry

Some Biochemical Studies on Antiviral Effect of some Medicinal Plants in Chicken

Thesis Presented By

Dina Kamal Arafa

(B.V.Sc. 2006) Suez Canal University (M.V.Sc. 2011) - Suez Canal University

For

The degree of PhD in Veterinary Medical Sciences (Biochemistry)

Under supervision of

Prof. Dr. AbdelRehim A. ElGhannam

Professor of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia.

Prof.Dr. Dalia Mansour Hamed

Professor of Avian and Rabbit diseases, Faculty of veterinary Medicine, Suez Canal University, Ismailia.

Prof. Dr. Abeir A. Shalaby Professor of Biochemistry,

Faculty of Veterinary Medicine, Suez Canal University, Ismailia.

Prof. Dr. Abdullah A. Selim

Chief Researcher of Poultry Diseases and Technical Manager at Reference Lab for Quality Control on Poultry Production.

Author	Dina Kamal Arafa
Title	Some Biochemical Studies on Antiviral Effect of some Medicinal Plants in
	Chicken.
Faculty	Veterinary medicine, Suez Canal University.
Location	Ismailia, Egypt.
Department	Biochemistry
Degree	PhD
Date	2019
Language	English
Supervision	-Prof. Dr. Abdelreheem A. El Ghannam
committee	Professor of Biochemistry,
	Faculty of Veterinary Medicine, Suez Canal University.
	-Prof. Dr. Abeir A. Shalaby
	Professor of Biochemistry,
	Faculty of veterinary Medicine, Suez Canal University.
	-Prof. Dr. Dalia M. Hamed
	Prof. of Avian and Rabbit Diseases,
	Faculty of Veterinary Medicine, Suez Canal University.
	-Chief Researcher Abdullah A. Selim
	Chief researcher of Poultry Diseases and
	Technical Manager at Reference Laboratory of
	Veterinary Quality Control on Poultry Production.

English Abstract

Cinnamaldehyde and Carvacrol are two essential oils of medical importance. They have been used as antibacterial in chicken but few studies have been done in their antiviral activity. *In vitro* and *in ovo* studies were performed to evaluate their cytotoxicity and antiviral activity on MDCK cell line and in SPF eggs, respectively. The cytotoxicity assay showed the higher toxicity of Carvacrol and their herb mix 1:1 when compared to Cinnamaldehyde alone. The three *in ovo* treatment of using each herb alone and their binary combination showed no antiviral activity. The *in vivo* study was done in SPF male chicks, 40 chicks were divided into 4 groups: control negative "E", control positive group "I",Vaccinated group "F", Vaccinated+herb mix treated group "G"(groups I,F,G was exposed to vNDV infection at day 28 converted to I, F',G') infected. HI results and NO, showed non significant results. vNDV infection cause significant increase in antioxidant enzymes, total antioxidant capacity, liver enzyme AST and creatinine. Herb mix results was significant increase in GSH at day 28 with non significant decrease in MDA. The significant increase of B1 band in polyacramide gel protein electrophoresis indicated the anti-inflamatory effect of herb mix treated group "G" and these biochemical results was confirmed by hispathological examination.

List of Abbreviations	i
List of figures	vii
List of tables	
Introduction	
Aim of work Review of literature	
Ancient use of medicinal plants (Herbs)	
-	
Chemical composition of Medicinal plants	
1-Cinnamaldehyde	
2-Carvacrol	6
Carvacrol and cinnamaldehyde synergism:	7
Antimicrobial activity of essential oils:	8
Antioxidant properties of medicinal plants:	13
Cytotoxicity of essential oils:	15
Newcastle disease virus	16
Some biochemical changes caused by viral infection:	21
1- Nitric oxide	
2 Malondialdehyde	
3 Antioxidant enzymes	22
4- Reduced glutathione	
5 Total antioxidant capacity	24
6- Protein electrophoresis and Acute phase protein	25
Material and methods	
I. In vitro study	29
i. Cell cytotoxicity of Essential oils (EOs):	29
ii. Pilot test for examination of EOs direct effect on vNDV hemage	
protein:	32
II. In ovo study	
III. In vivo study	
Results	49
I. In vitro results	49
1- MDCK cell line Cytotoxicity assay Using MTT dye:	

Contents

2- Pilot Test	53
II. In ovo results	54
III. In Vivo Results:	
Discussion	
English Summary	
Conclusion	
Recommendations	
References	114
الملخص العربي	Í

List of Abbreviations

iNOS	Inducible nitric oxide synthase
ΙκΒ-α	Nuclear factor kappa inhibitor alpha.
LPS	Lipopolysaccharide
Μ	Matrix
МАРК	Mitogen activated protein kinase
MDCK	Madin-Darby canine kidney
mg	Milligram
MgCl ₂	Magnesium chloride
MIC	Minimum inhibitory concentration
ml	Milliliter
mm	Millimeter
mm ³	Cube millimeter
mmol	Millimole
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
	tetrazolium bromide
ND	Newcastle disease
NDV	Newcastle disease virus
NEDA	Naphthyl ethylenediamine
NF-кВ	Nuclear factor kappa-light-chain-enhancer of
	activated B cells.
nm	Nanometer
nmol	Nanomol
NP	Nucleoprotein
OIE	Office of international epizotes
Ovo-Tf	Ovotransferin
P	Phosphoprotein
PI	Post infection
PM	Postmortum
pmol	Picomol
ppm	Part per million
RNI	Reactive nitrogen intermediate
ROS	Reactive oxygen species
S. typhinurium	Salmonella typhinurium
SAA	Serum Amyloid A
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel
	electrophoresis
SPF	Specific pathogen free
ТВА	Thiobarbituric acid
TC	Thymol and Cinnamaldehyde
TLRs	Toll like receptors

List of Abbreviations

ΤΝFα	Tumor necrosis factor alpha
v/v	Volume per volume
Velo	Velogenic
vNDV	Virulent Newcastle disease virus

List of figures

Figure 1. Chemical composition and Structure of cinnamaldehyde6
Figure 2. Chemical composition and structure of carvacrol7
Figure 3. Formation of formazan crystals from tetrazolium salt
Figure 4. <i>in vivo</i> Experimental design41
Figure 5. Non linear correlation between different concentrations of Carvacrol and
OD51
Figure 6.Non linear correlation between different concentrations of
Cinnamaldehyde and OD51
Figure 7.Non linear correlation between different concentrations of herb mix 1:1
and OD52
Figure 8. Non linear regression of different concentrations of each EO52
Figure 9.Photographs depicting dead chicks in treatment three
Figure 10.Reverse real time PCR (RRT-PCR) of different concentrations of
different groups in treatment three
Figure 11. Serum antibody titration after vaccination by haemagglutination
inhibition test against NDV in time interval
Figure 12. Viral shedding from oropharengeal swabs in Group I: control positive
group. Data is presented in means±SD61
Figure 13.ThermoCycler phographs illustrating standard curve of 4 concentrations
(10 fold serially diluted) by using Matrix gene primers and probe set
Figure 14. Thermo Cycler photographs illustrating standard curve of 4
concentrations (10 fold serially diluted) by using velogenic mesogenic primer
probe set

List of figures

Figure 15. Photographs illustrating the PM examination of dead chicks control
positive group (I)64
Figure 16. Photographs illustrating the PM examination of slaughtered chicks at
day 14 PI in vaccinated infected group (F')65
Figure 17.Plasma immunoglobulin (IgY) in different groups at day 28 before
infection
Figure 18.Plasma immunoglobulins (IgM and IgY) in different groups at day 4 PI.
Figure 19.Plasma AST (U/L) in different groups at day 28 before infection68
Figure 20.Plasma ALT (U/L) in different groups at day 28 before infection69
Figure 21.Plasma creatinine (U/L) in different groups at day 28 before infection. 69
Figure 22. Plasma AST (U/L) in different groups at day 4 PI70
Figure 23. Plasma ALT (U/L) in different groups at day 4 PI71
Figure 24. Plasma creatinine (mg/dl) in different groups at day 4 PI71
Figure 25. Serum NO (µmol/L) in different groups at day 28 before infection73
Figure 26. Serum MDA (nmol/ml) in different groups at day 28 before infection.73
Figure 27. Serum nitric oxide (µmol/L) in different groups at day 4 PI74
Figure 28. Serum MDA (nmol/ml) in different groups at day 4 PI75
Figure 29. Plasma total antioxidant capacity (m.mol/L) in different groups at day
28 before infection76
Figure 30. Plasma Superoxide dismutase (U/ml lysate) in different groups at day
28 before infection77
Figure 31. Plasma catalase (U/ml lysate) in different groups at day 28 before
infection77
Figure 32. Glutathione reduced (GSH) (m.mol/L whole blood) in different groups
at day 28 before infection

Figure 33. Plasma total antioxidant capacity (m.mol/L) in different groups at day 4
PI79
Figure 34. Superoxide dismutase (U/ml lysate) in different groups at day 4 PI79
Figure 35. Catalase (U/ml lysate) in different groups at day 4 PI80
Figure 36. Glutathione reduced (GSH) (m.mol/L whole blood) in different groups
at day 4 PI80
Figure 37. Polyacramide gel protein electrophoresis patterns
Figure 38. Serum protein fractions (gm%) by using polyacramide gel SPE in
different groups at day 28 before infection84
Figure 39. Serum protein subfractions (gm%) by using polyacramide gel SPE in
different groups at day 28 before infection85
Figure 40. Serum protein fractions (gm%) by using polyacramide gel SPE in
different groups
Figure 41.Serum protein subfractions (gm%) by using polyacramide gel SPE in
different groups at day 4 PI
Figure 42. Polyacramide gel SPE in Group E (before infection)
Figure 43. Polyacramide gel SPE in Group F (before infection)91
Figure 44. Polyacramide gel SPE in Group G (before infection)91
Figure 45. Polyacramide gel SPE in Group I (day 4 PI)92
Figure 46. Polyacramide gel SPE in Group G'(day 4 PI)92
Figure 47. Polyacramide gel SPE in Group F' (day 4 PI)93
Figure 48. Brain histopathological section in groups I, F',G'94
Figure 49. Trachea histopathological section in groups I, F', G'95
Figure 50. Lung histopathological section in groups I, F', G'
Figure 51. Chicken body weight (gm) in chicken in different groups at different
ages (weekly interval)97

List of tables

Table 1. NDV real-time RT-PCR Primer and hydrolysis probe sequences. 34
Table 2. Experimental design in SPF ECE
Table 3.Preparation of PCR Master Mix
Table 4.Cycling conditions of Primers and probe. 37
Table 5. NDV RRT-PCR Primer and hydrolysis probe sequences. 39
Table 6. NDV Vaccination program in groups (F and G)
Table 7.Cytotoxic effect of Carvacrol, Cinnamaldehyde and herb mix 1:1 on MDCK cell
line
Table 8. The correlation between different concentrations of each EO and optical density.
Table 9. Percentage of dead cells for the calculation of each EO CC50
Table 10. vNDV EID50 calculation from harvested chorioallantoic HA results
Table 11.Haemagglutination results of antiviral activity test
Table 12.Viral copies in chorioallantoic fluid by RRT-PCR in T3
Table 13. HI results of all groups at three times weekly interval
Table 14. Viral shedding copies from oropharengeal swabs of SPF chicks challenged
with vNDV
Table 15. RRT-PCR cycle threshold values of F gene and M gene of vNDV with 10 fold
diluted SPF egg isolated, titrated sample
Table 16. Effect of vaccination and EOs on chicken plasma immunoglobulin IgY66
Table 17. Effect of vaccination, EOs and vNDV on chicken plasma immunoglobulin IgM
and IgY67
Table 18. Effect of EOs and vaccination on plasma transaminases and creatinine at day
28 before infection
Table 19.Effect of EOs, vaccination and vNDV infection on plasma transaminases and
creatinine at day 28 before infection

List of tables

Table 20.Effect of EOs and vaccination on serum MDA and serum NO at day 28 before
infection72
Table 21. Effect of EOs, vaccination and vNDV experimental infection on serum MDA
and serum NO at day 4 PI74
Table 22. Effect of EOs and vaccination on plasma total antioxidant capacity, RBCs
superoxide dismutase (SOD), RBCs catalase (CAT) and whole blood glutathione reduced
(GSH) at day 28 before infection
Table 23. Effect of EOs, vaccination and vNDV infection on plasma total antioxidant
capacity, RBCs superoxide dismutase (SOD), RBCs catalase (CAT) and whole blood
glutathione reduced (GSH) at day 4 PI78
Table 24.Effect of EOs and vaccination on serum total protein (TP) and protein fractions
by serum protein electrophoresis (SPE) at day 28 before infection in SPF chicken
Table 25.Effect of EOs and vaccination on serum protein sub fractions by serum protein
electrophoresis (SPE) at day 28 before infection in SPF chicken
Table 26. Effect of EOs, vaccination and vNDV infection on serum total protein (TP) and
protein fractions by serum protein electrophoresis (SPE) at day 4 PI in SPF chicken 86
Table 27.Effect of EOs, vaccination and vNDV infection on serum protein subfractions
by serum protein electrophoresis at day 4 PI in SPF chicken
Table 28. Protein sub fractions in polyacramide gel SPE. 90
Table 29. Effect of EOs, vaccination and vNDV infection on tissues of SPF chicken's
different organs (Brain, Lung, Trachea)
Table 30. Effect of EOs on the body weight of vaccinated chicken in different ages
(weekly interval)