PEANUT CERCOSPORA LEAF SPOT DISEASE MANAGEMENT

BY

AHLAM EL-SAYED ABD-EL-AAL

A thesis Submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Plant Pathology)

Plant Pathology Department Faculty of Agriculture Zagazig University

2019

ABSTRACT

Cercospora leaf spot disease was surveyed in six different peanut regions grown under three different irrigation systems in five Governorates of Egypt during 2014 and 2015 growing seasons. El- Menofia Governorate (El- Khatatba Region) showed the lowest Cercospora leaf spot disease parameters. Ismailia-1 cultivar, followed by R92 were the most resistant cultivars to Cercospora leaf spot disease (CLS) and recorded the highest peanut pod yield in both seasons (2016&2017). However, Gregory, followed by Virginia were the most susceptible ones recording the lowest peanut pod yield in both seasons (2016&2017). The genetic diversity among six peanut cultivars, *i.e.* Giza 5, Giza 6, R92, Ismailia 1, Gregory and Virginia using RAPD and ISSR techniques revealed a total of 27 major scorable bands ranging from 282 to 1871 bp generated from five RAPD primers showing 14.26% polymorphism. While, a total of 37 scorable bands ranging from 255 to 2900 bp were produced from five ISSR primers detecting 26.53 % polymorphism. Unique bands were produced by both ISSRs and RAPDs. Genetic similarity values were ranged between 91.7- 100 % and 85.7-98.4 % for RAPD and ISSR, respectively. The lowest similarity using ISSR primers was observed between Gregory and Virginia cultivars. While, the lowest similarity using RAPD primers were found between cultivars Virginia and Giza 6. The dendrogram based on RAPD, ISSR and combined data of RAPD and ISSR separated the six peanut cultivars into two main clusters at a similarity coefficient of 0.25. Also, the dendrogram based on the combined data of both ISSR and RAPD displayed considerably similar results to those obtained from individual ISSR analysis.

Effect of different agricultural practices on CLS disease criteria and pod yield of peanut and different disease control ways were investigated during two growing seasons (2016 and 2017). Drip irrigation system, was the best for decreasing Cercospora leaf spot and increasing pod yield. First May was the best sowing date for decreasing CLS disease resulting the highest pod vield. Irrigation every two and three weeks exhibited the best irrigation treatment in this regard. Sowing distance between peanut plants at 20 & 25cm and planting peanut at two rows in plot were the best criteria in reducing Cercospora leaf spot showing the highest peanut pod yield. Thirty unit of nitrogen fertilizer (Urea 46%) was the best treatment for minimizing Cercospora leaf spot and maximizing peanut pod vield. Peanut cultivated after wheat, peanut plus maize intercropping system and less weed intensity recorded the lowest CLS disease and the highest peanut pod yield. Effectiveness of different materials used for induction of peanut CLS disease resistance was investigated. Bion and salicylic acid both at 8mM were the most effective chemical inducers for decreasing peanut CLS and increasing peanut pod yield. Also, naphthalene acetic acid (NAA) and indole butyric acid (IBA) at 200ppm were the most effective growth regulators to obtain promising disease control and consequently increased peanut pod yield production. Copper sulphate (CuSo₄) revealed the least CLS disease criteria and the highest peanut pod yield. On the other hand, calcium silicate (CaSio₃) and potassium silicate (K₂Sio₃) were the most

silicate minerals for decreasing CLS and increasing peanut pod yield. The activity of oxidative- reductive enzymes *i.e.* peroxidase and polyphenol oxidase as well as the amount of phenol contents were obviously higher in tissues of peanut leaves that were treated with any of the tested inducers than those untreated (control). Garlic and cumin plant extracts and oils at 2% were the most effective treatments for minimizing Cercospora leaf spot and consequently maximizing peanut pod yield production. *Pseudomonas flurescense* and *Trichoderma harzianum* were the best antagonistic bio- agents in controlling CLS disease and exhibiting the highest pod yield. Bio-Zied proved to be the best commercial bio products for decreasing CLS disease criteria and increasing pod yield. Score and rush up were the most effective fungicides for minimizing CLS and increased pod yield.

CONTENTS

Title	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
3. MATERIALS AND METHODS	37
4. RESULTS AND DISCUSSION	55
1- Survey of Cercospora leaf spot disease of peanut	55
2- Symptomology	57
3-Variatal reaction of some peanut cultivars against Cercospora leaf spot of peanut and pod yield	
production	61
3.1. Field experiments	61
3.1.1. incidence and severity of Cercospora leaf spot	61
3.1.2. Peanut Pod yield production	64
3.2- Laboratory experiments	67
3.2.1. Polymorphism and molecular markers by using RAPD-PCR	67
3.2.2. Genetic similarity and cluster analysis based on RAPD data	70
3.2.3. Polymorphism and molecular markers by using ISSR-PCR	71
3.2.4. Genetic similarity and cluster analysis based on ISSR data	74
3.2.5. Genetic similarity and cluster analysis based on RAPD and ISSR combined data	76

4. Effect of different irrigation systems on Cercospora	
leaf spot and pod yield production	78
4.1. Effect on incidence and severity of the disease	78
4.2. Peanut pod yield production	81
5. Agricultural practices affecting Cercospora leaf spot	
(CLS) and pod yield of peanut	82
5.1-Sowing date	82
5.1.1. Disease incidence and severity	82
5.1.2- Effect on peanut pod yield	84
5.2- Irrigation timing	86
5.2.1. Disease incidence and severity of (CLS)	86
5.2.2. Effect on peanut pod yield	88
5.3. Effect of sowing distance	89
5.3.1. Effect on disease incidence and severity	89
5.3.2. Effect on peanut pod yield	91
5.4- Effect of nitrogen fertilizer	93
5.4.1. Effect on disease incidence and severity	93
5.4.2. Effect on peanut pod yield	95
5.5- Effect of previous crops	96
5.5.1.Disease incidence and severity of Cercospora leaf	
spot (CLS)	96
5.5.2. Effect on pod yield	98
5.6- Effect of weed intensity	99
5.6.1. Effect on disease incidence and severity of (CLS)	99

5.6.2. Effect of weed intensity on pod yield	101
5.7- Effect of intercropping system	102
5.7.1. Effect on incidence and severity of (CLS)	102
5.7.2. Effect on pod yield	104
5.8. Effect of peanut rows number	106
5.8.1. Effect on the incidence and severity of (CLS)	106
5.8.2. Effect on pod yield	106
6. Disease Control Experiments	108
6.1. Induction of disease resistance against Cercospora	
leaf spot disease	108
6.1.1. Effect of antioxidant inducers	109
Biochemical changes associated with induced resistance	111
Phenolic compounds	113
Oxidative- reductive enzymes	115
6.1.2- Effect of some plant growth regulators	117
Biochemical changes associated with growth regulators	120
Phenolic compounds	120
Oxidative - reductive enzymes	120
6.1.3. Effect of sulfate minerals	123
Biochemical changes associated with sulfate mineral salts	125
Phenolic compounds	125
Oxidative - reductive enzymes	125
6.1.4 - Effect of silicate minerals	129

Biochemical changes associated with silicate mineral	
salts	132
Phenolic compounds	132
Oxidative - reductive enzymes	133
7. Biological, and chemical disease control experiments	135
7.1 Effect of some plant extracts and commercial plant	
oils on Cercospora leaf spot disease.	135
7.1.1 Effect of plant extracts	135
7.1.1.1. On peanut Cercospora leaf spot	135
7.1.1.2.: On peanut pod yield	137
7.2- Effect of commercial plant oils	138
7. 2.1. On peanut Cercospora leaf spot	138
7.1.2.2. On peanut pod yield	140
7.2. Effect of some fungal and bacterial bioagents	
applied as foliar spray on Cercospora leaf spot	
disease and pod yield of peanut	142
7.2.1. On peanut Cercospora leaf spot	142
7.2.2. On peanut pod yield	143
7.3. Effect of commercial bio- products on Cercospora	
leaf spot disease and pod yield of peanut	145
7.3.1. On Cercospora leaf spot	145
7.3.2. On peanut pod yield	146
7.4. Effect of some fungicides applied as foliar spray on	
Cercospora leaf spot disease and pod yield	147

7.4.1. On peanut Cercospora leaf spot	147
7.4.2. On peanut pod yield	149
Conclusion and Recommendation	
5. SUMMARY	153
6. REFERENCES	160
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	List of ISSR and RAPD primers and their sequences	42
2	investigated Commercial bio- products, their active ingredient, common name, method and rate of application against Cercospora leaf spot disease of peanut	52
3	Common name, Active ingredient, chemical formula and application rate against Cercospora leaf spot disease of peanut	53
4	Survey of Cercospora leaf spot disease of peanut in six governorates in Egypt during 2014 and 2015 seasons	56
5	Susceptibility of six peanut cvs. against Cercospora leaf spot under natural infection during two growing seasons 2016 and 2017	61
6	Effect of the natural infection by Cercospora leaf spot on pod yield of six peanut cvs., During 2016 and 2017 growing seasons	65
7	Total number of bands (Monomorphic and Polymorphic), Polymorphism percentages revealed by five RAPD primers for the six peanut cultivars	68
8	Similarity indices (Pairwise comparison) of the six peanut cultivars based on RAPD data	70

No.	Title	Page
9	Total number of bands (Monomorphic and Polymorphic), Polymorphism percentages revealed	
	by five ISSR primers for the six peanut cultivars	73
10	Similarity indices (Pairwise comparison) of the six peanut cultivars based on ISSR data	75
11	Similarity indices (Pairwise comparison) of the six peanut cultivars based on RAPD and ISSR	
	combined data	77
12	Cercospora leaf spot of peanut as affected by different irrigation systems	79
13	Peanut pod yield as affected by different irrigation systems	81
14	Cercospora leaf spot disease parameters as affected by sowing dates	83
15	Pod yield of peanut as affected by sowing dates	85
16	Cercospora leaf spot parameters as affected by different irrigation timing	86
17	Pod yield of peanut as affected by different irrigation timing	88
18	Cercospora leaf spot of peanut as affected by sowing distance	90
19	Pod yield of peanut as affected by sowing distance	92
20	Disease incidence and severity of (CLS) as affected	
	by nitrogen fertilizers	94

VIII

No.	Title	Page
21	Pod yield of peanut as affected by nitrogen fertilization	95
22	Disease incidence and severity of CLS as affected	
	by previous crops	97
23	Pod yield of peanut as affected by previous crops	98
24	Disease incidence and severity of CLS as affected by weed intensity	100
25	Pod yield of peanut as affected by weed intensity	101
26	Disease incidence and severity as affected by	
	intercropping system	102
27	Pod yield of peanut as affected by intercropping system	105
28	Disease incidence and severity as affected by row numbers	106
29	Pod yield of peanut as affected by row numbers	107
30	Effect of foliar spraying with some antioxidants on the disease parameters under field conditions during two successive seasons (2016 and 2017)	110
31	Effect of foliar spraying with some antioxidants on peanut pod yield during two successive seasons (2016 and 2017)	112
32	Effect of certain antioxidants on phenolic contents (mg/g fresh weight) in peanut leaves	114

No.	Title	Page
33	Effect of foliar spraying with some antioxidant inducers on peroxidase (PO) and polyphenoloxidase (PPO) activity, under field conditions during two	116
34	successive seasons (2016 and 2017 Effect of foliar spraying with some growth regulators on disease parameters during two successive seasons (2016 and 2017)	116118
35	Effect of foliar spraying with some growth regulators on peanut pod yield during two successive seasons (2016 and 2017)	119
36	Effect of some growth regulators on phenolic contents (mg/g fresh weight) in peanut leaf plants	121
37	Effect of foliar spraying with some growth regulators on peroxidase (PO) and polyphenoloxidase (PPO) activity two successive seasons (2016 and 2017)	122
38	Effect of foliar spraying with some sulfate mineral salts on disease parameters during two successive seasons (2016 and 2017)	124
39	Effect of foliar spraying with some sulfate mineral salts on peanut pod yield during two successive seasons (2016 and 2017)	126
40	Effect of some sulfate mineral salts on phenolic contents (mg/g fresh weight) in peanut leaf plants	127

No.	Title	Page
41	Effect of foliar spraying with some sulfate mineral salts on peroxidase (PO) and polyphenoloxidase (PPO) activity during two successive seasons (2016 and 2017)	128
42	Effect of foliar spraying with some silicate mineral salts on disease incidence and severity during two successive seasons 2016 and 2017	130
43	Effect of foliar spraying with some silicate mineral salts peanut pod yield during two successive seasons 2016 and 2017	131
44	Effect of some silicate mineral salts on phenolic contents (mg/g fresh weight) in peanut leaves	132
45	Effect of foliar spraying with some silicate mineral salts on peroxidase (PO) and polyphenoloxidase (PPO) activity during two successive seasons 2016 and 2017	133
46	Effect of foliar spraying with some solvent plant extracts on Cercospora leaf spot during two successive seasons (2016 and 2017)	136
47	Effect of foliar spraying with some solvent plant extracts on peanut pod yield during two successive seasons (2016 and 2017)	137
48	Effect of foliar spraying with some commercial plant oils on Cercospora leaf spot during two successive seasons (2016 and 2017)	139

No.	Title	Page
49	Effect of foliar spraying with some commercial plant oils on peanut pod yield during two successive seasons (2016 and 2017)	141
50	Effect of foliar spraying with some fungal and bacterial bioagents on Cercospora leaf spot during two seasons (2016 and 2017)	142
51	Effect of foliar spraying with some fungal and bacterial bioagents on peanut pod yield during two successive seasons (2016 and 2017)	143
52	Effect of foliar spraying with some commercial bio- productss on Cercospora leaf spot during two successive seasons (2016 and 2017)	145
53	Effect of foliar spraying with some commercial bio- products on peanut pod yield during two successive seasons(2016 and 2017)	147
54	Effect of foliar spraying with some fungicides on Cercospora leaf spot under field conditions during two successive seasons (2016 and 2017)	148
55	Effect of foliar spraying with some fungicides on peanut pod yield under field conditions during two successive seasons (2016 and 2017)	150

XII

LIST OF FIGURES

No.	Title	Page
1	(A & b) Scale of peanut cercospora leaf spot disease from $0 - 8$	40
2	Survey of Cercospora leaf spot disease of peanut in six governorates in Egypt during 2014 and 2015 seasons	56
3	Symptoms of early leaf spot one month after planting in cv. Giza 6 at Kafer El-Hamam El- Sharkiya governorate	58
4	Symptoms of early leaf spot on the lower surface three month after planting in cv. Giza 6 at Kafer El- Hamam El- Sharkiya governorate	58
5	Symptoms of Late leaf spot two months after planting in cv. Giza 6 at Kafer El-Hamam El- Sharkiya governorate	59
6	Symptoms of Late leaf spot on the lower leaves three months post planting in cv. Giza 6 at Kafer El- Hamam El- Sharkiya governorate	59
7	Symptoms of Late leaf spot on the lower surface	60
8	A lesion of late leaf spot with stromata arranged in concentric rings	60
9	Reaction of six peanut cvs. to natural infection by Cercospora leaf spot	62

XIII

No.	Title	Page
10	Effect of the natural infection by Cercospora leaf spot on pod yield of six peanut cvs., During 2016 and 2017 growing seasons	65
11	RAPD amplification products generated from six peanut cultivars using five primers	69
12	UPGMA clustering dendrogram illustrates the genetic relationship among six peanut cultivars based on RAPD data	71
13	ISSR amplification products generated from six peanut cultivars using five primers	72
14	UPGMA clustering dendrogram illustrates the genetic relationship among six peanut cultivars based on ISSR data	75
15	UPGMA clustering dendrogram illustrates the genetic relationship among six peanut cultivars based on RAPD and ISSR combined data	77
16	Cercospora leaf spot of peanut as affected by different irrigation systems	79
17	Peanut pod yield as affected by different irrigation systems	82
18	Cercospora leaf spot disease parameters as affected by sowing dates	84
19	Pod yield of peanut as affected by sowing dates	85
20	Cercospora leaf spot parameters as affected by different irrigation timing	87

XIV

No.	Title	Page
21	Pod yield of peanut as affected by different irrigation timing	89
22	Cercospora leaf spot of peanut as affected by sowing distance	90
23	Pod yield of peanut as affected by sowing distance	92
24	Incidence and severity of (CLS) as affected by nitrogen fertilizers	94
25	Pod yield of peanut as affected by nitrogen fertilization	96
26	Disease incidence and severity of CLS as affected by previous crops	97
27	Pod yield of peanut as affected by previous crops	99
28	Disease incidence and severity of CLS as affected by weed intensity	100
29	Pod yield of peanut as affected by weed intensity	101
30	Disease incidence and severity as affected by intercropping system	103
31	Intercropping peanut with maize	103
32	Pod yield of peanut as affected by intercropping system	105
33	Disease incidence and severity as affected by row numbers	107
34	Pod yield of peanut as affected by row numbers	108