Fabrication and Characterization of Hydroxyapatite/
Carbon Nanocomposites for Water Treatment

Presented by

Mohamed Ali Hassan Ali

A Thesis Submitted
To

Faculty of Science
In Partial Fulfillment of the
Requirements for
The Degree of
Ph.D.

(Physical Chemistry)

Chemistry Department
Faculty of Science
Cairo University

(2019)



ABSTRACT
Student Name: Mohamed Ali Hassan Ali
Title of the thesis:

"Fabrication and characterization of hydroxyapatite /carbon
nanocomposites for water treatment"

Degree: Ph.D. (Physical chemistry)

Novel hydroxyapatite/graphene (HAp/G) and octadecylamine/hydroxyapatite/graphene
(ODA/HApP/G) nanocomposites were recommended as excellent sorbents for the removal of
different types of water contaminants. High-resolution transmission electron microscopy (HR-
TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Fourier transform
infrared (FTIR) spectrophotometry, Raman spectrophotometry, particle size distribution, and zeta
potential measurements were performed to reveal the morphology, composition, crystal structure,
functionality and stability of the prepared sorbents. Batch adsorption study was successfully
employed on heavy metal ions (Pb?* and Cd?*), Mineral metal ions (Fe** and Mn?*), organic dye
(methylene blue, MB) and emulsified crude oil. The equilibrium concentrations of all
contaminations were assessed according to standard methods. The kinetics of the sorption process
were investigated together with the influence of the initial pollutant concentration, sorbent dosage
and solution pH on the sorption capacity. The sorption process followed pseudo-second-order
Kinetics, and (10-30) min was quite enough to attain equilibrium. The data were correlated using
four adsorption isotherm models (Freundlich, Langmuir, Temkin and Dubinin—Radushkevich) to
understand the adsorption mechanism. It was found that the maximum sorption capacity (Cmax,
mg/g) for Pb?*, Cd?*, Fe®*, Mn?*, MB and emulsified crude oil were respectively 400, 370, 416,
588, 333, 714.
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'Chapter 5 Conclusion & Future Work

9. The influence of pH on the sorption process was carried out in the
pH range from 3-11 and the results showed that as pH increases
sorption capacity increases.

10. A great increase in the sorption percentage was observed with the

quantity of sorbent dosage.

In future work, we are going to study intensively the factors which
may affect the capability of HAp/G and other magnetic nanocomposites
to remove more types of water pollutants. We also look forward to
studying more applicable process using a fixed-bed flow-through

sorption column.
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