STUDIES ON BIO-UTILIZATION OF SOME AGRICULTURE WASTES TO PRODUCE α-AMYLASE ENZYME IMPORTANT IN FOOD PROCESSING

By

RANIA MENAAZ BAYOMY EL-FEKY

B.Sc. Agric. Sc. (Food Technology), Cairo Univ. (2004) M.Sc. Agri. Sc. (Food Technology), Ain Shams Univ. (2010)

> A Thesis Submitted in partial Fulfillment Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences

(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

CONTENTS

	Page
LIST OF TABLES.	VI
LIST OF ABBREVIATIONS	XIV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Agro-industrial wastes	6
2.1.1 Types of agro industrial wastes	7
2.1.1.1 Agricultural residues	7
2.1.1.2. Industrial wastes	7
2.1.1.2.1 Rice straw	10
2.1.1.2.2 Sugarcane bagasse	12
2.1.1.2.3 Corn gluten meal (CGM)	13
2.2. Solid State Fermentation	14
2.2.1. Advantages of SSF compared with SmF	16
2.2.2. Disadvantages of SSF compared to SmF	17
2.3. Microbial alpha amylase	20
2.4. Production process of alpha amylase	22
2.5. Optimization of α -amylase by solid- state fermentation	24
2.6. Purification and characterization of α -amylase	27
2.7. Uses of agro-industrial wastes for production of α -	
amylase	29
2.8. Application of α -amylase	29
3. MATERIALS AND METHODS	31
3.1. Materials.	31
3.1.1. Agro-industrial wastes	31
3.1.2. Chemicals	31
3.1.3. Strains	31
3.2. Preparation of agro-industrial wastes.	31
3.2.1. Rice straw	31
3.2.2. Sugarcane bagasse	32

3.3. Preparation of inoculum	32
3.4. Enzyme production by Solid State Fermentation (SSF)	33
3.4.1. Experiment 1.	33
3.4.2. Experiment 2.	33
3.4.3. Experiment 3.	33
3.2. Methods of analysis.	
3.2.1. Chemical composition of agro-industrial wastes	33
3.2.2. Solid state fermentation	34
3.2.3. Extraction procedure of α -amylase enzyme	34
3.2.4. Assay of α -amylase enzyme by DNS method	34
3.2.5. Estimation of protein	35
3.2.5.1 Preparation of protein reagent	36
3.2.6. Partial purification of α -amylase technique	36
3.2.7. Dialysis of amylase enzyme	37
3.2.8. Determination of the specific activity of α -amylase	37
3.2.9. Application of partially purified enzyme	37
3.2.9.1. Production of pan bread	37
3.2.10. Statistical analysis	38
4. RESULTS AND DISCUSSION	39
4.1. Chemical composition of different agro-industrial wastes	39
4.2. Concentrations of α -amylase (mg/g) at different moisture	
content for different agro-industrial wastes	40
4.2.1. Concentrations of α -amylase (mg/g) at different	
moisture content for rice straw inoculated with two	
different strains	40
4.3. Effect of moisture content on the production of α -amylase	42
4.3.1. Effect of moisture content on the production of α -	
amylase on rice straw inoculated with two different	
strains	42
4.4. Determination of fungal α -amylase activity	44
4.4.1. α-amylase activity (U/g solid substrate) of rice straw	
inoculated with two different strains	44

4.5. Determination of protein	46
4.5.1. Determination of protein (mg/g) for rice straw	10
inoculated with two different strains	46
4.6. Concentrations of α -amylase (mg/g) of inner layers of	10
sugarcane bagasse inoculated with two different strains	47
4.7. Effect of moisture content on the production of α -amylase	.,
on inner layers of sugarcane bagasse inoculated with	
two different strains	49
4.8. α -amylase activity (U/g solid substrate) of inner layers of	.,
sugarcane bagasse inoculated with two different strains	51
4.9. Determination of protein (mg/g) of inner layers of	
sugarcane bagasse inoculated with two different strains	53
4.10. Concentrations of α -amylase (mg/g) of corn gluten meal	
without addition inoculated with two different strains	55
4.11. Effect of moisture content on the production of α -	
amylase on corn gluten meal without addition with	
two different strains	56
4.12. α-amylase activity (U/g solid substrate) of corn gluten	
meal without addition inoculated with two different	
strains	58
4.13. Determination of protein (mg/g) of corn gluten meal	
without addition inoculated with two different strains	59
4.14. Concentrations of α -amylase (mg/g) of corn gluten meal	
after addition inoculated with two different strains	61
4.15. Effect of moisture content on the production of α -	
amylase on corn gluten meal after addition inoculated	
with two different strains	63
4.16. α -amylase activity (U/g solid substrate) of corn gluten	
meal after addition inoculated with two different strains	64
4.17. Determination of protein (mg/g) of corn gluten meal	
after addition inoculated with two different strains	66
4.18. Concentrations of α -amylase (mg/g) at different	67

fermentation period for different agro-industrial wastes	
4.19. Effect of fermentation period on different agro-industrial	
wastes	69
4.19.1. Effect of fermentation period on the production of α -	
amylase in rice straw	69
4.19.2 Effect of fermentation period on the production of α -	
amylase in inner layers of sugarcane bagasse	70
4.19.3. Effect of fermentation period on the production of α -	
amylase in corn gluten meal without addition	73
4.19.4. Effect of fermentation period on the production of α -	
amylase in corn gluten meal with addition of germ cake	
and corn steep liquor	74
4.20. Effect of incubation temperature on α -amylase activity	
in different agro-industrial wastes	76
4.20.1. Effect of incubation temperature on the production of	
α -amylase in rice straw and inner layers of sugarcane	
bagasse	78
4.20.2. Effect of incubation temperature on the production of	
α -amylase on corn gluten meal either without addition	
or addition of corn steep liquor and germ cake	80
4.21. Determination of α -amylase activity (U/g) in different	
agriculture wastes	82
4.22. Determination of protein (mg/g) in different agriculture	
wastes	84
4.23. Application of different levels of partially purified α -	
amylase preparations from different strains studied on	
pan bread production	87
4.23.1 Physical properties of pan bread	87
4.23.2 Effect of using different levels of partially purified α -	
amylase from different sources on the color properties	
of produced pan bread	90
	98

5. SUMMARY AND CONCLUSION
6. REFERNCES
ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1	Estimated crop residues generation and utilization in Egypt	
	during the year 2004	9
2	Major uses of crop residues in Egypt	10
3	Comparison of SSF and SmF	19
4	Proximate chemical composition of different agro-	
	industrial wastes	40
5	Concentrations of α -amylase (mg/g) in crude enzyme	
	extracted from rice straw inoculated with Aspergillus niger	
	ATCC 102 at different moisture contents	41
6	Concentrations of α -amylase (mg/g) in crude enzyme	
	extracted from rice straw inoculated with Aspergillus	
	oryzae NRRL 6270 at different moisture contents	42
7	Effect of moisture content on the production of α -amylase	
	using Aspergillus niger ATCC 102 on rice straw under	
	solid state fermentation conditions at 30°C	43
8	Effect of moisture content on the production of α -amylase	
	using Aspergillus oryzae NRRL 6270 on rice straw under	
	solid state fermentation conditions at 30 C	43
9	Determination of α -amylase (U/g) in crude enzyme	
	extracted from rice straw inoculated with Aspergillus niger	
	ATCC 102 at different moisture contents	44
10	Determination of α -amylase (U/g) in crude enzyme	
	extracted from rice straw inoculated with Aspergillus	
	oryzae NRRL 6270 at different moisture contents	45
11	Determination of protein (mg/g) in crude enzyme extracted	
	from rice straw inoculated with Aspergillus niger ATCC	
	102 at different moisture contents	46
12	Determination of protein (mg/g) in crude enzyme extracted	
	from rice straw inoculated with Aspergillus oryzae NRRL	46

6270 at different moisture contents

- 13 Concentrations of α -amylase (mg/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- 14 Concentrations of α-amylase (mg/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- 15 Effect of moisture content on the production of α -amylase using Aspergillus niger ATCC 102 on inner layers of sugarcane bagasse under solid state fermentation conditions at 30°C
- 16 Effect of moisture content on the production of α -amylase using *Aspergillus oryzae* NRRL 6270 on inner layers of sugarcane bagasse under solid state fermentation conditions at 30°C
- 17 Determination of α-amylase activity (U/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- 18 Determination of α-amylase activity (U/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- **19** Determination of protein (mg/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- 20 Determination of protein (mg/g) in crude enzyme extracted from inner layers of sugarcane bagasse inoculated with *Aspergillus niger* ATCC 102 at different moisture contents 54
- 21 Concentrations of α -amylase (mg/g) in crude enzyme 55

VII

48

50

48

51

52

52

extracted from corn gluten meal without addition inoculated with *Aspergillus niger* ATCC 102 at different moisture contents

- **22** Concentrations of α-amylase (mg/g) in crude enzyme extracted from corn gluten meal without addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture level contents
- 23 Effect of moisture content on the production of α -amylase using *Aspergillus niger* ATCC 102 on corn gluten meal without addition under solid state fermentation conditions at 30°C
- 24 Effect of moisture content on the production of α -amylase using *Aspergillus oryzae* NRRL 6270 on corn gluten meal without addition under solid state fermentation conditions at 30°C
- 25 Determination of α -amylase activity (U/g) in crude enzyme extracted from corn gluten meal without addition inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- 26 Determination of α -amylase activity (U/g) in crude enzyme extracted from corn gluten meal without addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- 27 Determination of protein (mg/g) in crude enzyme extracted from corn gluten meal without addition inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- **28** Determination of protein (mg/g) in crude enzyme extracted from corn gluten meal without addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- **29** Concentrations of α -amylase (mg/g) in crude enzyme extracted from corn gluten meal after addition inoculated 61

56

57

57

58

59

60

with Aspergillus niger ATCC 102 at different moisture contents

- **30** Concentrations of α -amylase (mg/g) in crude enzyme extracted from corn gluten meal with addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- 31 Effect of moisture content on the production of α -amylase using *Aspergillus niger* ATCC 102 on corn gluten meal after addition under solid state fermentation conditions at $30^{\circ}C$
- 32 Effect of moisture content on the production of α -amylase using *Aspergillus oryzae* NRRL 6270 on corn gluten meal after addition under solid state fermentation conditions at $30^{\circ}C$
- **33** Determination of α-amylase activity (U/g) in crude enzyme extracted from corn gluten meal after addition inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- **34** Determination of α-amylase activity (U/g) in crude enzyme extracted from corn gluten meal after addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- **35** Determination of protein (mg/g) in crude enzyme extracted from corn gluten meal after addition inoculated with *Aspergillus niger* ATCC 102 at different moisture contents
- **36** Determination of protein (mg/g) in crude enzyme extracted from corn gluten meal after addition inoculated with *Aspergillus oryzae* NRRL 6270 at different moisture contents
- 37 Concentrations of α-amylase (mg/g) in crude enzyme in different agriculture wastes inoculated with Aspergillus niger ATCC 102

62

63

64

65

65

67

38	Concentrations of α -amylase (mg/g) in crude enzyme in	
50	different agriculture wastes inoculated with Aspergillus	
	oryzae NRRL 6270	69
39	Effect of fermentation period on the production of α -	09
39	1 1	
	amylase from rice straw inoculated with Aspergillus niger	
	ATCC 102 under solid state fermentation conditions at 20°	- 0
	30°C	70
40	Effect of fermentation period on the production of α -	
	amylase from rice straw inoculated with Aspergillus oryzae	
	NRRL 6270 under solid state fermentation conditions at	
	30°C	70
41	Effect of fermentation period on the production of α -	
	amylase from inner layers of sugarcane bagasse inoculated	
	with Aspergillus niger ATCC 102 under solid state	
	fermentation conditions at 30° C	71
42	Effect of fermentation period on the production of α -	
	amylase from inner layers of sugarcane bagasse inoculated	
	with Aspergillus oryzae NRRL 6270 under solid state	
	fermentation conditions at 30° C	72
43	Effect of fermentation period on the production of α -	
	amylase from corn gluten meal inoculated with Aspergillus	
	<i>niger</i> ATCC 102 under solid state fermentation conditions	
	at 30°C	73
44	Effect of fermentation period on the production of α -	15
	amylase from corn gluten meal inoculated with <i>Aspergillus</i>	
	oryzae NRRL 6270 under solid state fermentation	
	conditions at 30° C	74
45		/4
45	Effect of fermentation period on the production of α -	
	amylase from corn gluten meal inoculated with Aspergillus	
	niger ATCC 102 under solid state fermentation conditions	
	at 30°C	75
46	Effect of fermentation period on the production of α -	76

Х

amylase from corn gluten meal inoculated with *Aspergillus* oryzae NRRL 6270 under solid state fermentation conditions at 30° C

- 47 Concentrations of α-amylase (mg/g) in crude enzyme in different agriculture wastes inoculated with *Aspergillus niger* ATCC 102
- 48 Concentrations of α-amylase (mg/g) in crude enzyme in different agriculture wastes inoculated with *Aspergillus* oryzae NRRL 6270
- 49 Effect of incubation temperature on the production of αamylase on rice straw inoculated with *Aspergillus niger* ATC 102 under solid state fermentation conditions
- 50 Effect of incubation temperature on the production of α amylase on inner layers of sugarcane bagasse inoculated with *Aspergillus niger* ATCC 102 under solid state fermentation conditions
- 51 Effect of incubation temperature on the production of αamylase on rice straw inoculated with Aspergillus oryzae NRRL 6270 under solid state fermentation conditions
- 52 Effect of incubation temperature on the production of αamylase on inner layers of sugarcane bagasse inoculated with *Aspergillus oryzae* NRRL 6270 under solid state fermentation conditions
- 53 Effect of incubation temperature on the production of α amylase on corn gluten meal without addition inoculated with *Aspergillus niger* ATCC 102 under solid state fermentation conditions
- 54 Effect of incubation temperature on the production of αamylase on corn gluten meal with addition inoculated with *Aspergillus niger* ATCC 102 under solid state fermentation conditions

55 Effect of incubation temperature on the production of α - 82

77

77

78

80

81

80

amylase on corn gluten meal with addition inoculated with

under

solid

state

Aspergillus oryzae NRRL 6270

fermentation conditions 56 Effect of incubation temperature on the production of α amylase on corn gluten meal with addition inoculated with Aspergillus oryzae NRRL 6270 under solid state fermentation conditions 57 Determination of α - amylase enzyme activity (U/g) in crude enzyme in different agriculture wastes inoculated with Aspergillus niger ATCC 102 83 **58** Determination of α - amylase enzyme activity (U/g) in crude enzyme in different agriculture wastes inoculated with Aspergillus oryzae NRRL 6270 84 59 Determination of protein (mg/g) in crude enzyme in different agriculture wastes inoculated with Aspergillus niger ATCC 102 60 Determination of protein (mg/g) in crude enzyme in different agriculture wastes inoculated with Aspergillus oryzae NRRL 6270 86 Effect of using different levels of partially purified α -61 different amylase from sources the physical on measurements of pan bread 62 Effect of using partially purified α -amylase enzyme from different sources on the organoleptic characteristics of produced pan bread 89 63 Effect of using different levels of partially purified α amylase from different sources on color attributes of pan 91 bread crust 64 Effect of using different levels of partially purified α amylase from different sources on color attributes of pan bread crumb 65 Effect of using different levels of partially purified α -94

82

85

88

amylase from different sources on texture profile analysis (TPA) of produced pan bread

66 Effect of using partially purified α-amylase from different sources on the alkaline water retention capacity (%) of produced pan bread during storage at ambient temperature $25^{\circ}C \pm 2^{\circ}C/72$ h (on dry weight basis)

ABSTRACT

Rania Menaaz Bayomy El-Feky: Studies on Bio-Utilization of Some Agriculture Wastes to Produce α-amylase Enzyme Important in Food Processing. Unpuplished ph.D Dissertation, Department Food Science, Faculty of Agriculture, Ain Shams University, 2019.

In the present study, optimization the production of fungal α amylase by two different strains of fungi namely Aspergillus niger ATCC 102 and Aspergillus oryzae NRRL 6270 under solid state fermentation (SSF). Four different agro-industrial wastes e.g. Rice straw (Oryza sativa), Inner layers of sugarcane bagasse (Saccharum officinarum), Corn-gluten meal (CGM 1) (Zea mays) without addition and Corn-gluten meal after addition of corn steep liquor and Germ cake (CGM 2); which cause a serious environmental problem; were used to produce α -amylase. Chemical compositions of tested agro-industrial wastes were achieved and the results indicated that, an significant differences between fiber and protein content in current agro-industrial wastes. Different cultural conditions like moisture content of prepared agro-industrial by-products (30 to 70%), fermentation periods (12 to 120 h.) and incubation temperatures (25-35°C) were optimized to obtain the maximum yield of α -amylase activity. Process optimization for production of α -amylase was carried out in 250 ml Erlenmeyer flask and conducted using the previous substrates in a single parameter mode showing maximum enzyme activity. Among all the substrates inner layers of sugarcane bagasse was found to be best substrate for α -amylase production (4.62 U/g) in phosphate buffer as extracting medium for Aspergillus oryzae NRRL 6270. Amylase assay was performed by 3, 5 dinitrosalicylic acid (DNS) method with absorbance at 540 nm. Further, the suitable incubation period, moisture level and incubation temperature were examined. In case of Aspergillus niger ATCC 102, the optimized conditions for maximum activity of α -amylase using rice straw, inner layers of sugarcane bagasse, Corn gluten meal without addition and corn gluten meal after addition recorded 2.47 U/g (solid substrate) at 40% moisture content after 12 hours of incubation at 30° C of incubation temperature, 4.23 U/g (solid substrate) at 60% moisture content after 72 hours of incubation at 30°C of incubation temperature, 1.99 U/g (solid substrate) at 70% moisture content after 72 hours of incubation at 30°C of incubation temperature and 1.49 U/g (solid substrate) at 30% moisture content after 48 hours of incubation at 30°C of incubation temperature, respectively. The results in case of Aspergillus oryzae NRRL 6270 recorded 3.80, 4.62, 1.92 and 3.09 U/g (solid substrate) for rice straw, inner layers of sugarcane bagasse, CGM 1 and CGM 2, respectively. The optimum conditions for SSF as follows temperature at 30°C. The enzyme was purified by ammonium sulphate precipitation. Partial purified α -amylase activity was determined. The partially purified enzyme optimally active at 30°C and pH 7.0 and the purified fungal α -amylase was used in bread making and compared with the commercial enzyme. The effect of addition of partial purified enzyme from different agro-industrial wastes on pan bread was achieved at two different concentrations 140 and 280 U. The addition of purified of α amylase from inner layers of sugarcane bagasse at 140 U caused to increase the specific volume which was 6.3 and 6.1 for Aspergillus niger ATCC 102 and Aspergillus oryzae NRRL 6270, respectively. Textural study revealed an improved of pan bread quality, resulting in the decrease of hardness. Inner layers of sugarcane bagasse extracts that partial purified at 140 and 280 U decrease the value of hardness for Aspergillus niger ATCC 102 which was 70 N and 80 N, respectively. Corn gluten meal after addition of corn steep liquor and germ cake extract that partial purified at 280 U recorded 92 N for the same strain but for Aspergillus oryzae NRRL 6270 the extracts from inner layers of sugarcane bagasse at 140 and 280 U decrease the value of hardness which recorded 76 N and 86 N, respectively and the extract that partial purified from corn gluten meal after addition of corn steep liquor and germ cake was 92 N. The

sensory evaluation supported this result and confirmed the beneficial effect of addition on pan bread odor and crust color. The results showed a significant effect of the purified α -amylase in pan bread and allow us to improve the quality of the bread. The study indicated clearly that partial purified α -amylase is a potential candidate for future applications in bread making industry. Utilization of agro-industrial wastes provides an alternative method and value-addition in cost effectiveness of bioprocess. The obtained results demonstrated that, the potential application of the used strategy for α -amylase production from agro-industrial by-products.

Key words: Fungal alpha amylase; Agro-industrial by-products; Solid State Fermentation (SSF); UV- Spectrophotometer; amylase assay; Partial Purification; Dialysis bag; Application; pan bread.