DRYING BEHAVIOUR OF HAYANI DATE VARIETY USING INFRARED RADIATION

By

SHYMAA SAAD SAYED IBRAHIM

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering Faculty of Agriculture Cairo University EGYPT 2019

Format Reviewer

Vice Dean of Graduate Studies

Name of Candidate: Shymaa Saad Sayed IbrahimDegree: M.Sc.Title of Thesis: Drying Behaviour of Hayani Date Variety Using Infrared
Radiation.Degree: M.Sc.

Supervisors: Dr. Ahmed El-Raie Emam suliman

Dr. Yossry Bayoumy Abd-Elhay

Dr. Mohamed Mustafa El-Kholy

Department: Agricultural Engineering

Approval: 21 / 4 /2019

ABSTRACT

A study was carried out to test and evaluate the use of infrared radiation as heat energy source for drying date palm. Where in this study an infrared dryer was developed and tested at the laboratory of the Department of Agricultural Engineering, Faculty of Agriculture, Cairo University. The initial moisture content of the freshly harvested hayani date was 58.5 %(w.b.).High moisture hayani date was dried (infrared method and convection heating method) by using infrared radiation intensity included four different levels of infrared radiation intensity (0.649, 0.973, 1.093 and 1.161 kW/m²), three different levels of air temperature (40, 50 and 60°C) and three different levels of air three levels of inlet air temperature of about (40, 50 and 60°C) and three levels of air velocity of (0. 5, 1 and 1.5 m/s) without infrared.

The drying behavior was simulated using two different thin layer models (Lewis and Henderson and Pabis). The studied models were compared for simulating and predicting the change in date palm moisture during drying process content was then assessed. The obtained results showed that, both of the examined models could describe the drying behavior of dates satisfactorily under the range of studied treatments. On the other hand, the Lewis's model considered more proper for describing the drying behavior and predicting the changes in moisture content of date more than the Henderson and Pabis's model. Meanwhile, drying constant of Lewis's model (k_L) increased with the increasing of radiation intensity and air temperature and the decreasing of air velocity for the infrared drying. While, for the convection drying with the increasing of air temperature and air velocity. Increased the quality tests when used the infrared drying method in terms of sensory quality, the total and reducing sugar, the total phenolic content and the rehydration ratio. Also, the quality tests of dried whale date fruits showed that, at radiation intensity 1.161kW/m², air temperature 50°C with air velocity 1m/s showed the best treatment in terms of quality, drying time and mathematical analysis, while dried half date fruits, at radiation intensity 1.161kW/m², air temperature 40°C with air velocity 1m/s showed the best treatment in terms of quality, drying time and mathematical analysis.

Key words: Infrared, Convection heating, Mathematical modeling, Drying, Date palm, Moisture content.

CONTENTS

INTRODUCTION REVIEW OF LITERATURE 1. Date palm 2. World production and trade 3. Nutritional value and benefits of the dates 4. Fruit classification 5. Date development 6. Degradation of date palm trees and date production in Arab countries 7. Drying theory 8. Mechanism of drying 9. Importance and fundamentals of drying process 10. Disadvantage of drying 11. Drying characteristics 12. Infrared drying 13. Basic laws of infrared radiation 14. Advantages and disadvantages of using infrared radiation in food drying 15. Applications of infrared for crop drying 16. Factors influencing the drying process using infrared and convective heating a. Factors affecting drying process using infrared b. Combined infrared-convection heating 17. Thin layer models for crop drying 18. Thin layer models for crop drying with infrared radiation 19. Quality changes of date during the drying process 19. Quality changes of date during the drying process 11. Materials	Pag	
REVIEW OF LITERATURE 1. Date palm 2. World production and trade 3. Nutritional value and benefits of the dates. 4. Fruit classification 5. Date development 6. Degradation of date palm trees and date production in Arab countries. 7. Drying theory 8. Mechanism of drying. 9. Importance and fundamentals of drying process. 10. Disadvantage of drying. 11. Drying characteristics 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared b. Combined infrared-convection heating. 17. Thin layer models for crop drying with infrared radiation. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS 1. Materials		INTROD
 Date palm		
 World production and trade		
 Nutritional value and benefits of the dates. Fruit classification. Date development. Degradation of date palm trees and date production in Arab countries. Drying theory. Mechanism of drying. Importance and fundamentals of drying process. Disadvantage of drying. Drying characteristics. Infrared drying. Basic laws of infrared radiation. Advantages and disadvantages of using infrared radiation in food drying process using infrared radiation sof infrared for crop drying. Factors influencing the drying process using infrared and convective heating. Factors affecting drying process using infrared b. Combined infrared-convection heating. Thin layer models for crop drying with infrared radiation. Materials. 		-
 5. Date development. 6. Degradation of date palm trees and date production in Arab countries. 7. Drying theory. 8. Mechanism of drying. 9. Importance and fundamentals of drying process. 10. Disadvantage of drying. 11. Drying characteristics. 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. 1. Materials. 		
 5. Date development. 6. Degradation of date palm trees and date production in Arab countries. 7. Drying theory. 8. Mechanism of drying. 9. Importance and fundamentals of drying process. 10. Disadvantage of drying. 11. Drying characteristics. 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. 1. Materials. 	1	4. Fruit
 6. Degradation of date palm trees and date production in Arab countries		
Arab countries. 7. Drying theory. 8. Mechanism of drying. 9. Importance and fundamentals of drying process. 10. Disadvantage of drying. 11. Drying characteristics. 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials.		
 Mechanism of drying. Importance and fundamentals of drying process. Disadvantage of drying. Drying characteristics. Infrared drying. Basic laws of infrared radiation. Advantages and disadvantages of using infrared radiation in food drying. Applications of infrared for crop drying. Factors influencing the drying process using infrared and convective heating. Factors affecting drying process using infrared. Combined infrared-convection heating. Thin layer models for crop drying with infrared radiation. Quality changes of date during the drying process. MATERIALS AND METHODS. Materials. 		
 Mechanism of drying. Importance and fundamentals of drying process. Disadvantage of drying. Drying characteristics. Infrared drying. Basic laws of infrared radiation. Advantages and disadvantages of using infrared radiation in food drying. Applications of infrared for crop drying. Factors influencing the drying process using infrared and convective heating. Factors affecting drying process using infrared. Combined infrared-convection heating. Thin layer models for crop drying with infrared radiation. Quality changes of date during the drying process. MATERIALS AND METHODS. Materials. 	1′	7. Dryin
 9. Importance and fundamentals of drying process. 10. Disadvantage of drying. 11. Drying characteristics. 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 		
 Disadvantage of drying. Drying characteristics. Infrared drying. Basic laws of infrared radiation. Advantages and disadvantages of using infrared radiation in food drying. Applications of infrared for crop drying. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. Thin layer models for crop drying with infrared radiation. Quality changes of date during the drying process MATERIALS AND METHODS. Materials. 		
 12. Infrared drying. 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 		
 13. Basic laws of infrared radiation. 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 	. 2:	11. Dryi
 14. Advantages and disadvantages of using infrared radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 	. 2.	12. Infra
 radiation in food drying. 15. Applications of infrared for crop drying. 16. Factors influencing the drying process using infrared and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 	2	13. Basic
 15. Applications of infrared for crop drying	d	14. Adva
 16. Factors influencing the drying process using infrared and convective heating	23	radia
 and convective heating. a. Factors affecting drying process using infrared. b. Combined infrared-convection heating. 17. Thin layer models for crop drying. 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process. MATERIALS AND METHODS. 1. Materials. 		
 a. Factors affecting drying process using infrared b. Combined infrared-convection heating 17. Thin layer models for crop drying 18. Thin layer models for crop drying with infrared radiation	d	16. Fact o
 b. Combined infrared-convection heating	3.	and c
 17. Thin layer models for crop drying 18. Thin layer models for crop drying with infrared radiation 19. Quality changes of date during the drying process MATERIALS AND METHODS 1. Materials	3.	a. Fa
 18. Thin layer models for crop drying with infrared radiation. 19. Quality changes of date during the drying process MATERIALS AND METHODS. 1. Materials. 	4	b. C
radiation 19. Quality changes of date during the drying process MATERIALS AND METHODS 1. Materials	4	17. Thin
19. Quality changes of date during the drying process MATERIALS AND METHODS 1. Materials		
MATERIALS AND METHODS		
1. Materials	4	19. Qual i
·	49	MATER
The eventuated anon	4	1. Mater
a. The experimental crop	. 49	a. T
b. The experimental Setup		
2. Measurements and instrumentation		
a. Radiation intensity measurement		
b. Air velocity measurement		
c. Temperature_measurement	54	c. Te

d. Mass measurement	5
e. Moisture content determination	6
3. Experimental treatments	6
a. Infrared radiation method	6
b.Convection heating method	6
4. Experimental procedure	8
a. Preparation of date samples	8
b. Laboratory experiments	8
5. Examined drying models for simulating the drying	
data)
a. Lewis's model	1
b. Henderson and Pabis's model	1
6. Quality evaluation tests of dried date	2
a. Sensory evaluation	2
Statistical analysis	2
b. Determination of total sugar content and reducing	
sugars	2
c. Determination of total phenolic compounds	
d. Determination of rehydration ratio	3
RESULTS AND DISCUSSION 64	4
1. Infrared drying method	4
a. Drying of whole date palm fruits	4
b. Drying of half date palm fruits	4
2. Convection heating method	3
a. Drying of whole date palm fruits 123	3
b. Drying of half date palm fruits 13'	7
3. Quality evaluation of dates	3
SUMMARY 16	1
REFERENCES 16	9
APPENDICES 188	8
	١

LIST OF TABLES

No.	Title	Page
1.	Leading date-producing countries in the world in 2014	6
2.	Basic laws of infrared radiation (Dagerskog and Österström, 1979)	27
3.	Mathematical models given by various authors for drying curves	42
4.	Drying constant (k_L) of Lewis's model at different levels of drying radiation intensity(I), air temperature(T) and air velocity(V)	68
5.	Constants of equation 6 relating drying constant (K_L) with the radiation intensity (I) at different levels of air velocity(V) and drying air temperature(T)	70
6.	Constants of equation 7 relating drying constant (K_L) with the drying air temperature (T) at different levels of air velocity(V) and radiation intensity(I)	72
7.	Constants of equation 8 relating drying constant (K_L) with the air velocity (V) at different levels of drying air temperature (T) and radiation intensity (I)	76
8.	Drying constant (k_h) of Henderson and Pabis's model at different levels of drying radiation intensity(I), air temperature(T) and air velocity(V)	77
9.	Constants of equation 10 relating drying constant (K_h) with the radiation intensity (I) at different levels of air velocity (V) and drying air temperature (T)	79
10.	Constants of equation 11 relating drying constant (K_h) with the drying air temperature (T) at different levels of air velocity (V) and radiation intensity (I)	81
11.	Constants of equation 12 relating drying constant (K_h) with the air velocity (V) at different levels of drying air temperature (T) and radiation intensity (I)	85

12.	Values of coefficient of determination (R^2) and standard error (SE) for the data of whole date palm fruits using Lewis's model
13.	Values of coefficient of determination (R^2) and standard error (SE) for the data of whole date palm fruits using Henderson and Pabis's model
14.	The overall average of the obtained (R^2) and (SE) for both studied drying models
15.	Values of coefficient of correlation (r), chi-square (x^2) , mean bias error (<i>MBE</i>) and root mean square error (<i>RMSE</i>) at Lewis's model and Henderson and Pabis's models
16.	Drying constant (k_L) of Lewis's model at different levels of drying radiation intensity, air temperature and air velocity
17.	Constants of equation 17 relating drying constant (K_L) with the radiation intensity (<i>I</i>) at different levels of air velocity(<i>V</i>) and drying air temperature(<i>T</i>)
18.	Constants of equation 18 relating drying constant (K_L) with the drying air temperature (T) at different levels of air velocity(V) and radiation intensity(I)
19.	Constants of equation 19 relating drying constant $(K _L)$ with the air velocity (V) at different levels of drying air temperature (T) and radiation intensity (I)
20.	Drying constant (k_h) of Henderson and Pabis's model at different levels of drying radiation intensity(<i>I</i>), air temperature(<i>T</i>) and air velocity(<i>V</i>)
21.	Constants of equation 21 relating drying constant $(K `_h)$ with the radiation intensity (<i>I</i>) at different levels of air velocity(<i>V</i>) and drying air temperature(<i>T</i>)
22.	Constants of equation 22 relating drying constant $(K _h)$ with the drying air temperature (T) at different levels of air velocity (V) and radiation intensity (I)

23.	Constants of equation 23 relating drying constant $(K _h)$ with the air velocity (V) at different levels of drying air temperature (T) and radiation intensity (I)
24.	Values of coefficient of determination (R^2) and standard error (SE) for the data of half date palm fruits using Lewis's model
25.	Values of coefficient of determination (R^2) and standard error (SE) for the data of half date palm fruits using Henderson and Pabis's model
26.	The overall average of the obtained (R^2) and (SE) for both studied drying models
27.	Values of coefficient of correlation (r), chi-square (x^2) , mean bias error (<i>MBE</i>) and root mean square error (<i>RMSE</i>) at Lewis's model and Henderson and Pabis's models
28.	Drying constant $(k_L)_{\text{Conv.}}$ of Lewis's model at different levels of air temperature(<i>T</i>) and air velocity(<i>V</i>)
29.	Constants of equation 25 relating drying constant (K_L) _{Conv.} with the air temperature (T) at different levels of air velocity
30.	Constants of equation 26 relating drying constant $(K_L)_{\text{Conv.}}$ with the air velocity (V) at different levels of air temperature.
31.	Drying constant $(k_h)_{\text{Conv.}}$ of Henderson and Pabis's model at different levels of air temperature(<i>T</i>) and air velocity(<i>V</i>)
32.	Constants of equation 28 relating drying constant $(K_h)_{\text{Conv.}}$ with the air temperature (T) at different levels of air velocity.
33.	Constants of equation 29 relating drying constant $(K_h)_{\text{Conv.}}$ with the air velocity (V) at different levels of air temperature. 130

34.	Values of coefficient of determination (R^2) and standard error (SE) for the data of whole date palm fruits using Lewis's model at convection method
35.	Values of coefficient of determination (R^2) and standard error (SE) for the data of whole date palm fruits using Henderson and Pabis's model at convection method
36.	The overall average of the obtained (R^2) and (SE) for both studied drying models at convection method
37.	Values of coefficient of correlation (r), chi-square (x^2) , mean bias error (<i>MBE</i>) and root mean square error (<i>RMSE</i>) at Lewis's model and Henderson and Pabis's models at convection method
38.	Drying constant $(k_L)_{Conv.}$ of Lewis's model at different levels of air temperature(<i>T</i>) and air velocity(<i>V</i>)
39.	Constants of equation 31 relating drying constant (K_L) _{Conv.} with the air temperature (T) at different levels of air velocity
40.	Constants of equation 32 relating drying constant (K_L) _{Conv.} with the air velocity (<i>V</i>) at different levels of air temperature. 141
41.	Drying constant $(k_h)_{\text{Conv.}}$ of Henderson and Pabis's model at different levels of air temperature(<i>T</i>) and air velocity(<i>V</i>)
42.	Constants of equation 34 relating drying constant $(K `_h)_{\text{Conv.}}$ with the air temperature (T) at different levels of air velocity
43.	Constants of equation 35 relating drying constant $(K_h)_{\text{Conv.}}$ with the air velocity (V) at different levels of air temperature. 145
44.	Values of coefficient of determination (R^2) and standard error (SE) for the data of half date palm fruits using Lewis's model at convection method

Values of coefficient of determination (R^2) and standard error (SE) for the data of half date palm fruits using Henderson and Pabis's model at convection method.	148
The overall average of the obtained (R^2) and (SE) for both studied drying models at convection method	150
Values of coefficient of correlation (r), chi-square (x^2) , mean bias error (<i>MBE</i>) and root mean square error (<i>RMSE</i>) at Lewis's model and Henderson and Pabis's models at convection method	151
Effect of drying methods on the sensory evaluation of whole date palm fruits	152
Effect of drying methods on the sensory evaluation of half date palm fruits	153
The changes in total and reducing sugars of the dried whole date fruits at different levels of infrared radiation intensity, air temperature and air velocity and convection heating	155
The changes in total and reducing sugars of the dried half date fruits at different levels of infrared radiation intensity, air temperature and air velocity and convection heating	155
The changes in total phenolic compounds of the dried whole date fruits at different levels of infrared radiation intensity, air temperature and air velocity and convection heating	155
The changes in total phenolic compounds of the dried half date fruits at different levels of infrared radiation intensity, air temperature and air velocity and convection heating	150
	standard error (SE) for the data of half date palm fruits using Henderson and Pabis's model at convection method

LIST OF FIGURES

No.	Title	Page
1.	The drying curve	19
2.	A photograph of infrared dryer	50
3.	Schematic diagram of experimental infrared dryer	51
4.	The infrared heaters	52
5.	Dimmer used for controlling of the IR heater intensity	52
6.	The electric heater and the temperature control circuit	52
7.	The axial flow fan and digital control switch	53
8.	Overall feature of the radiation intensity meter used for the experimental work.	54
9.	Hygro-thermo-anemometer	55
10.	Digital balance	55
11.	Electric drying oven	56
12.	The experimental treatments used for the experimental work	57
13.	Dates palm moisture ratio as related to drying time at different levels of radiation intensity (I) , air temperature (T) and air velocity (V)	65
14.	Drying constant (K_L) of Lewis's model at the maximum radiation intensity of 1.161 kW/m ² , different drying air temperature and air velocity 0.5 m/s	69
15.	Relationship between drying constant (K_L) and the radiation intensity (I) at different levels of drying air temperature (T) and air velocity (V)	71
16.	Relationship between drying constant (K_L) and the drying air temperature (T) at different levels of radiation intensity (I) and air velocity (V)	73

17.	Relationship between drying constant (K_L) and the air velocity (V) at different levels of radiation intensity (I) and drying air temperature (T)	75
18.	Drying constant (K_h , A) of Henderson and Pabis's model at the maximum radiation intensity of 1.161 kW/m ² , different drying air temperature and air velocity 0.5 m/s	78
19.	Relationship between drying constant (K_h) and the radiation intensity (I) at different levels of drying air temperature (T) and air velocity (V)	80
20.	Relationship between drying constant (K_h) and the drying air temperature (T) at different levels of radiation intensity (I) and air velocity (V)	82
21.	Relationship between drying constant (K_h) and the air velocity (V) at different levels of radiation intensity (I) and drying air temperature (T)	84
22.	Measured and predicted values of whole date palm moisture content using Lewis's model at (I) 1.161 kW/m^2 , (T) 60° C and (V) 0.5 m/s	87
23.	Measured and predicted values of whole date palm moisture content using Lewis's model at (I) 0.649 kW/m ² , (T) 40°C and (V) 1.5 m/s	87
24.	Measured and predicted values of whole date palm moisture content using Henderson and Pabis's model at (I) 1.161 kW/m ² , (T) 60°C and (V) 0.5 m/s	89
25.	Measured and predicted values of whole date palm moisture content using Henderson and Pabis's model at (I) 0.649 kW/m ² , (T) 40°C and (V) 1.5 m/s	89
26.	Date half fruits moisture ratio as related to drying time at different levels of radiation intensity (I), air temperature (T) and air velocity (V)	93
27.	Drying constant (K_L) of Lewis's model at the maximum radiation intensity of 1.161 kW/m ² , different drying air temperature and air velocity 0.5 m/s	97

28.	Relationship between drying constant (K_L) and the radiation intensity (<i>I</i>) at different levels of drying air temperature (<i>T</i>) and air velocity (<i>V</i>)	98
29.	Relationship between drying constant (K_L) and the drying air temperature (T) at different levels of radiation intensity (I) and air velocity (V))1
30.	Relationship between drying constant (K_L) and the air velocity (V) at different levels of radiation intensity (I) and drying air temperature (T)	
31.	Drying constant (K_h, A) of Henderson and Pabis's model at the maximum radiation intensity of 1.161 kW/m ² , different drying air temperature and air velocity 0.5 m/s	
32.	Relationship between drying constant $(K _h)$ and the radiation intensity (I) at different levels of drying air temperature (T) and air velocity (V)	
33.	Relationship between drying constant $(K _h)$ and the drying air temperature (T) at different levels of radiation intensity (I) and air velocity (V)	.0
34.	Relationship between drying constant $(K `_h)$ and the air velocity (V) at different levels of radiation intensity (I) and drying air temperature (T)	
35.	Measured and predicted values of half dates moisture content using Lewis's model at (I) 1.161 kW/m ² , (T) 60°C and (V) 0.5 m/s	
36.	Measured and predicted values of half dates moisture content using Lewis's model at (I) 0.649 kW/m ² , (T) 40°C and (V) 1.5 m/s	
37.	Measured and predicted values of half date palm fruits moisture content using Henderson and Pabis's model at (I) 1.161 kW/m ² , (T) 60°C and (V) 0.5 m/s	
38.	Measured and predicted values of half date palm fruits moisture content using Henderson and Pabis's model at (I) 0.649 kW/m ² , (T) 40°C and (V) 1.5 m/s	
	11	. /

39.	Dates palm moisture ratio as related to drying time at the maximum of drying air temperature (60°C) and different levels of drying air velocity	1
40.	Drying constant (K_L) _{Conv.} of Lewis's model at the minimum and the maximum levels of drying air temperature and air velocity	
41.	Relationship between drying constant (K_L) _{Conv.} and the drying air temperature (T) at different levels of air velocity (V)	
42.	Relationship between drying constant $(K_L)_{\text{Conv.}}$ and the air velocity (V) at different levels of air temperature $(T)_{\dots\dots\dots}$ 126	
43.	Drying constant $(K_h, A)_{\text{Conv.}}$ of Henderson and Pabis's model at the minimum and the maximum levels of drying air temperature (T) and drying air velocity $(V)_{\text{Conv.}}$ 127	7
44.	Relationship between drying constant $(K_h)_{\text{Conv.}}$ and the drying air temperature (T) at different levels of air velocity (V)	
45.	Relationship between drying constant $(K_h)_{\text{Conv.}}$ and the air velocity (V) at different levels of drying air temperature (T)	
46.	Measured and predicted values of whole date palm moisture content using Lewis's model at the minimum and the maximum levels of air temperature and air velocity at convection method	-
47.	Measured and predicted values of whole date palm moisture content using Henderson and Pabis's model at the minimum and the maximum levels of air temperature and air velocity at convection method	
48.	Dates palm moisture ratio as related to drying time at the maximum and minimum of drying air temperature (T) and different levels of drying air velocity (V)	
49.	Drying constant $(K _L)_{\text{Conv.}}$ of Lewis's model at the minimum and the maximum levels of drying air temperature (T) and air velocity (V)	
	130	5

50.	Relationship between drying constant $(K_L)_{Conv.}$ and the drying air temperature (T) at different levels of air velocity (V)
51.	Relationship between drying constant $(K_L)_{Conv.}$ and the air velocity (V) at different levels of drying air temperature (T)
52.	Drying constant $(K_h, A)_{\text{Conv.}}$ of Henderson and Pabis's model at the minimum and the maximum levels of drying air temperature (T) and drying air velocity (V)
53.	Relationship between drying constant $(K `_h)$ _{Conv.} and the drying air temperature (T) at different levels of air velocity (V)
54.	Relationship between drying constant $(K_h)_{\text{Conv.}}$ and the air velocity (V) at different levels of drying air temperature (T)
55.	Measured and predicted values of half date palm moisture content using Lewis's model at the minimum and the maximum levels of air temperature and air velocity at convection method
56.	Measured and predicted values of half date palm moisture content using Henderson and Pabis's model at the minimum and the maximum levels of air temperature and air velocity at convection method
57.	Rehydration curves of the whole date palm fruits at for infrared drying method
58.	Rehydration curves of the whole date palm fruits at for convection drying method
59.	Rehydration curves of the half date palm fruits at for infrared drying method
60.	Rehydration curves of the half date palm fruits at for convection drying method