

Benha University

Faculty of Veterinary Medicine

Bacteriology, Immunology and Mycology Dep.

Bacteriological and Molecular studies on some Gram negative bacteria isolated from edible Egg and Poultry Products

A thesis Presented by

Doaa Mostafa Ragheb Sharaf

B.V.Sc., Kafr El-Sheikh University (2007) M.V. Sc., Benha University (2015)

Under the of supervision

Prof. Dr.

Ashraf Awad AbdEl-Tawab

Prof. and Head of Bacteriology, Immunology and Mycology Department Faculty of Veterinary Medicine Benha University

Prof. Dr. Khalid Ibrahim El-ekhnawy

Chief Researcher at Animal Health Research Institute (Doki, Giza)

for

Ph.D. degree in veterinary Medical Sciences (Bacteriology, Immunology and Mycology)

(2019)

List of contents

	Contents	Page
1.	Introduction	1
2.	Review of Literature	6
2.1	Sources of Contamination of chicken Meat Products and eggs with with bacteria.	6
2.2	Public health hazard of some pathogenic bacteria	10
2.3	E. coli:	14
2.3.1.	Isolation and identification of <i>E. coli</i> isolates:	14
2.3.2	Incidence of <i>E. coli</i> in edible egg and chicken meat products	16
2.3.3.	Serotyping of isolated <i>E. coli</i> :	19
2.3.4.	Antibiotic sensitivity of <i>E. coli</i> :	20
2.3.5.	PCR for detection of <i>E. coli</i> virulent genes:	23
2.4	Pseudomonas:	27
2.4.1.	Culture character and biochemical reaction	27
2.4.2.	Incidence of pseudomonas in egg and poultry products	29
2.4.3.	Antibiotic sensitivity for pseudomonas	31
2.4.4.	Virulence factors of <i>Pseudomonas aeruginosa</i>	32
2.5.	Salmonella:	36
2.5.1.	Isolation and identification of Salmonella:	36
2.5.2.	Incidence of Salmonella in edible eggs and poultry products:	38
2.5.3.	Sensitivity of Salmonellae to antimicrobial agents	41
2.5.4	Detection of Salmonella virulent genesusing (PCR) technique	43

3.	Material and Methods	48
3.1	Materials	48
3.1.1	Samples	48
3.1.2	Isolation and Identification of Bacterial Pathogens.	48
3.1.3.	Media and reagents used for biochemical Identification of the isolates.	50
3.1.4.	Stains used	51
3.1.5.	Materiaials for serology	51
3.1.6.	Media used for antimicrobial sensitivity	51
3.1.7.	Material for Polymerase Chain Reaction (PCR)	52
3.1.7.1	Extraction of DNA	52
3.1.7.2	Equipment and apparatuses used for extraction of nucleic acids	53
3.1.7.3	PCR Master Mix used for PCR	53
3.1.7.4	Oligonucleotide primers used in PCR	53
3.1.7.5	DNA Molecular weight marker	55
3.1.7.6	Material used for agarose gel electrophoresis	55
3.1.7.7	Equipment and apparatuses used in PCR	56
3.2	Methods	57
3.2.1	Collection and handling of samples	57
3.2.2.	Preparation of egg samples	57
3.2.3	Isolation and identification of <i>E. coli</i>	58
3.2.4	Isolation of <i>Pseudomonas spp</i> •	58
3.2.5.	Isolation of salmonellae	58
3.3.	Biochemical identification of the isolates:	59

3.4.	Serological identification of isolates	60
3.5.	Antibacterial sensitivity test of antibiotics:	63
3.6.	Method of Polymerase chain reaction (PCR)	64
3.6.1.	Method of Extraction of DNA according to QIAamp DNA mini kit instructions	64
3.6.2.	Preparation of PCR Master Mix	65
3.6.3	Cycling conditions of the primers during cPCR	66
3.6.4.	DNA Molecular weight marker	67
3.6.5.	Agarose gel electrophoreses	68
4	Results	69
5	Discussion	87
6	Conclusion	95
7	Summary	96
8	References	99
9	Arabic Summary	1

LIST OF TABLES

No.	Title	Page
1	Number of collected samples	48
2	Different of antibiotic used and interpretation of their sensitivity	52
3	Oligoneocleotide primers sequences	54
4	Uniplex PCR master mix.	65
5	Preparation of stx1, stx2duplex master mix	66
6	Cycling conditions of the different primers during PCR	67
7	Incidence of some Gram negative bacteria (<i>E. coli</i> , <i>Pseudomonas</i> and <i>salmonella</i>) from all tested samples	69
8	Incidence of E. coli from examined samples	70
9	Biochemical reaction of <i>E.coli</i> isolates	71
10	Serotyping of isolated <i>E. coli</i> strains	71
11	Results of antibiotic sensitivity testing of <i>E. coli</i>	72
12	Results of <i>E. coli</i> virulence and resistance genes	73
13	Incidence of isolated <i>Pseudomonas</i> from tested samples	78
14	Biochemical identification of the isolated <i>P.aeruginosa</i>	79
15	Results of antibiotic sensitivity testing for <i>P. aureginosa</i> .	80
16	Results of virulence and resistance genes of isolated strains of <i>P.aeruginosa</i> .	81
17	Incidence of Salmonella in tested samples	83
18	Results of serotypes of Salmonella from tested samples	83
19	Results of antibiotic sensitivity testing for Salmonella isolates	84
20	Results of Salmonella virulence genes	84

List of Figures

No	Title	Page
1	Incidence of <i>E.coli</i> in examined poultry products samples and edibleeggs .	70
2	Agarose gel electrophoresis pattern of PCR for detection of shiga toxin1,2 (<i>stx</i> 1 and <i>stx</i> 2).	73
3	agarose gel electrophoresis of PCR for detection of eaeA gene	74
4	Agarose gel electrophoresis for PCR for detection of (tet A) gene of E.coli	75
5	Agarose gel electrophoresis pattern of PCR for <i>erm</i> B gene detection of <i>E.coli</i> .	76
6	Agarose gel electrophoresis pattern for <i>bla</i> Tem gene detection of <i>E coli</i> .	77
7	Incidence of isolated <i>Pseudomonas</i> from tested samples	78
8	Agarose gel electrophoresis for amplification of Pseudomonas aeruginosa 16 s rRNA gene.	80
9	Agarose gel electrophoresis of Las B and bla vim genes of Pseudomonas aeruginosa	81
10	agarose gel electrophoresis for tox A and mexR genes of Pseudomonas aeruginosa	82
11	Incidence of Salmonella in tested samples.	83
12	Agarose gel electrophoresis showing Salmonella invA gene	85
13	Agarose gel electrophoresis of amplification of <i>sopB</i> and <i>bcfC</i> genes of Salmonella	85
14	Agarose gel electrophoresis showing amplification of <i>stn</i> gene of salmonella	86

7-SUMMARY

Gram negative bacteria are considered one of most important pathogens that causing foodborne infections worldwide and dangerous for human health. So that this study was done to make afocus on most Gram negative M.O from medical point of view also to spotlight on PCR as an accurate, rappid and sensetive methods required for detection of these pathogens.

The objective of this study is a bacteriological and molecular studies on some Gram negative bacteria isolated from edible egg and poultry products. Through isolation and identification of *E.coli, Pseudomonas aeruginosa* and *Salmonella* from chicken fillet, chicken liver , smoked turkey products and edible eggs, serotyping of isolated strains and detection of antibiotic sensetivity for isolated strains and application of PCR as an accurate procedure for determination of virulence and resistance genes in isolated strains.

Escherichia coli results:

Escherichia coli used as an indicator microorganism because it provides an estimate of fecal contamination and poor sanitation during processing. In this study 150 samples of poultry products represented as chicken fillet ,chicken liver and smoked turkey products (50) for each, also another 120 sample of edible eggs represented as (30) for each sample of red egg, duck egg, white egg and balady eggs as each three egg represents one sample.

1- *E. coli* was isolated from poultry products by 14, 5, 0 from chicken fillet, chicken liver and smoked poultry products with percentage 28%, 10% and 0% respectively. From egg samples *E. coli* was isolated from (8/30) samples with apercentage of (26.6%) from whole red egg samples.

2- Serotyping of isolated strains was as following (O148, O125, O26, O158) from poultry products.

The isolated strains serotyped as (O1, O55, O44, O125) from egg samples.

3- Performing of sensitivity test for isolated strains, they were found to be sensitive to ciprofloxacin, colistin sulphate, amoxycillin clavulinic acid and gentamycin. The isolates were resistant to doxycycline, cefotaxieme and erythromycin. Only one strain from this study show resistance to more than three antibiotics.

Regarding to PCR testing, the isolated strains were tested for stx1,stx2 and eaeA genes for virulence, eaeA gene was present in 100% of tested samples while stx1,stx2 weren't detected in these strains. For the rsistance genes blaTem and tetA were detected in the tested sample while ermB gene couldn't detected.

Regarding to Pseudomonas isolation and identification:

- 1- In chicken fillet samples this m.o. was present in 6 samples with apercentage 12% and in egg samples it was present in 4 samples with percentage 13.3%, it not detected in liver or smoked turkey samples.
- 2- The isolated strains were serotyped as *P.aeruginosua*.
- 3- By performing antibiotic sensitivity testing ;the isolates were sensetive to imipenem, gentamycin, ciprofloxacin and amoxycillin clavulinic acid., but they were resistant to cefotaxiema, colistin sulphate and doxycycline.
- 4- The isolates were confirmed by using 16SrRNA gene after that determination of virulence genes (*las B* and *tox A*) genes as they were present in 100% of isolates. Determination of resistance genes of *bla*Vim and *mexR* genes show that the first wasn't present in the tested samples while the second one was detected in all tested samples.

Regarding to Salmonella:

- 1- In the current study *Salmonella* was detected in the tested chicken fillet with incidence 2 %, while it was detected in egg with incidence 3.33%. The detected isolates were from chicken fillet and duck eggs shell.
- 2- The isolates were serotyped as *Salmonella* Enteritidis 1,9,12:g.m. this is for chicken fillet sample, the other isolate was serotyped as *Salmonella* Virchow 6,7,14:r:1,2 from duck eggs shell.
- 3- The antibaiotic sensetivity testing show that the two strains were sensitive to all used antibiotic discs.
- 4- Polymerase Chain Reaction was applied for detection of virulence genes *inv*A, *sop*B, *bcf*C and *stn* genes ,and the results showed that these genes were detected in all tested samples with percent 100%.