Biochemical and Molecular Genetics Biomarkers as Indicators of Fish Pollution in Egypt

A thesis Submitted in Partial Fulfillment of the Requirement for the Degree of

> DOCTOR OF PHILOSOPHY IN Science Chemistry (Organic chemistry) **By**

Esam Ahmed Abdel-Karim Ahmed

B. Sc. 1998 M. Sc. 2010

Department of Chemistry Faculty of Science Zagazig University Sharkia Egypt

2019

ABSTRACT

The present study was undertaken to evaluate the effect of some aquatic pollutants such as commercial formulation of glyphosate-based herbicide (Roundup®), cadmium chloride as a heavy metal and mixture between them in freshwater Nile tilapia (*Oreochromis niloticus L.*) fingerlings by some biochemical, molecular and cytogenetic markers as bio-indicator of fish pollution in Egypt. This study was conducted at "Central Laboratory for Aquaculture Research", Abbassa, Abo-Hammad, Sharkia, Agriculture Research Center through three experiments in three exposure periods with different concentrations after calculating LC₅₀.

This study focused on biochemical variations through determination the activity of some antioxidative parameters such as SOD, CAT, GST, GSH and MDA as biochemical biomarkers of fish pollution through taking samples from important exposure tissues as gills and liver after each exposure period. In addition, lysozyme activity of plasma as cellular immune biomarker was estimated. Determination Physicochemical parameters of water as Temperature, dissolved oxygen, salinity, electrical conductivity, total dissolved solids, hydrogen ion concentration (pH), total alkalinity, total hardness, total ammonia, nitrite-nitrogen, dissolved orthophosphate, heavy metal in water and heavy metal in fish samples.

This study mainly concentrated on the biochemical and genetic variations for nuclei of DNA of the gills and liver cells after exposure for these pollutants by estimation of DNA damage by single cell gel electrophoresis (SCGE) or comet assay after each exposure period and subsequently, study the gene expression at blood plasma protein level by SDS-PAGE protein electrophoresis as molecular genetic markers after each exposure period.

Key words:

Nile tilapia fish, Pollution, Biochemical, Molecular Genetics, Biomarkers, Cadmium Chloride, Glyphosate, Cytotoxicity, SDS-Protein, Antioxidants, DNA comet assay.

CONTENTS

1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Freshwater Pollution and Nile tilapia Performance	4
2.2. Impact of Cadmium Chloride as a Heavy Metal on tilapia Fish	6
2.3. Impact of Glyphosate as Herbicide on tilapia Fish	8
2.4. Lethal Concentration for Heavy Metals and Herbicides	9
2.5. Biochemical Biomarkers: Assessment of Antioxidants by Oxidative	10
Parameters	
2.6. Lysozyme as Cellular Biomarkers	15
2.7. Molecular Biomarkers	17
2.7.1. DNA Damage using Comet Assay for Assessment of Genotoxicity of	17
Pollution	
2.7.2. Protein Fingerprint as Biochemical and Molecular Marker using SDS–	20
PAGE	
3. Materials and methods	23
3.1. The formula of toxic compounds and their properties	24
3.1.1. Cadmium Chloride (heavy metal-inorganic compound)	24
3.1.2. Glyphosate (herbicide-organic compound)	24
3.2. Determination of lethal concentration for fish (LC ₅₀ –96hrs)	25
3.3. Experimental design	26
3.3.1. First experiment	26
3.3.2. Second experiment	26
3.3.3. Third experiment	27
3.4. Sampling for different analyses	28
3.5. Water quality parameters. (under laboratory conditions)	29
3.5.1. Physical parameters	29
3.5.1.1. Temperature and Dissolved oxygen	29

3.5.2. Chemical Analyses Methods	29
3.5.2.1. Salinity and total dissolved solids	29
3.5.2.2. Hydrogen ion concentration (pH)	29
3.5.2.3. Total alkalinity (mg/l)	29
3.5.2.4. Total hardness (mg/l)	30
3.5.2.5. Total ammonia (NH ₄ ⁺ + NH ₃)	31
3.5.2.6. Nitrite-nitrogen (NO ₂ -N)	31
3.5.2.7. Dissolved orthophosphate (mg/l)	32
3.6. Heavy metal in water samples	33
3.7. Heavy metal in Fish samples	33
3.8. Determination of oxidative parameters activity of different treatments	33
3.8.1. Catalase Activity in tissues	34
3.8.2. Superoxide Dismutase Activity in tissues	35
3.8.3. Determination of Reduced Glutathione	37
3.8.4. Determination of Glutathione-S-Transferase Activity	38
3.8.5. Determination of lipid peroxidation, malondialdehyde (MDA)	39
3.9. Determination of lysozyme activity (spectrophotometric assay)	41
3.10. Estimation of DNA damage (DNA comet assay)	41
3.10.1. Preparation of stock solutions for the SCGE / comet assay protocol	42
3.10.1.1. Preservation buffer for tissues. (phosphate buffer solution) PBS	42
(pH:7.4)10x/liter freshly prepared	
3.10.1.2. Lysis buffer	42
3.10.1.3 Electrophoresis (running) alkaline buffer pH > 13	42
3.10.1.4. Neutralization buffer (pH 7-7.5)	43
3.10.1.5. Staining solution (10 x Stock)	43
3.10.1.6. Mincing solution (10 x Stock)	43
3.11. Determination of plasma protein patterns by SDS-PAGE	46

3.11.1.Stock Solutions	46
3.11.1.1. 0.25 M EDTA (Ethylene diamine tetracetic acid) (pH8.0)	46
3.11.1.2. Sodium dodecyl sulfate (SDS 10% W/V)	46
3.11.1.3. Ammonium peroxide sulfate solution (APS 10% W/V)	46
3.11.1.4. TEMED (N, N, N, N'- tetramethyl ethylene diamine)	47
3.11.1.5. Sample Buffers	47
3.11.2.Application of Samples (Digestion of protein)	47
3.11.3.Gel Buffers	48
3.11.3.1. Resolving gel buffer (Tris, pH 8.8, 4°C)	48
3.11.3.2. Stacking gel buffer (pH 6.8, 4°C)	48
3.11.3.3. Acrylamide Stocks	48
3.11.3.4. Electrophoresis Buffer (running buffer, pH 8.3)	48
3.11.3.5. Gel Preparation	49
3.11.3.6. Electrophoretic Conditions	49
3.11.3.7. Gel Staining Solution	49
3.11.3.8. Distaining solution	50
3.11.3.9. Gel Staining and Distaining	50
3.12. Statistical analysis	50
4. RESULTS	51
4.1. Determination of physicochemical parameters and heavy metal residues of freshwater used in experiments	51
4.1.1. Physicochemical parameters and heavy metals residues of Abbassa	51
freshwater used in experiments	
4.1.2. Estimation of heavy metals in muscles of fish after 45days	52
4.2. Estimation of oxidative parameters	54
4.3. Estimation of plasma lysozyme activity in Nile tilapia after 96hrs, 192hrs and	58
45 days	
4.4. Estimation of nuclear DNA damage using comet assay	60

4.5. Protein Patterns Profile using SDS-PAGE under oxidative stress	66
5.DISSCUTIONS	78
5.1. Physicochemical parameters and heavy metal residues of fish muscle and	78
water used in experiments	
5.1.1. Physicochemical parameters and heavy metal residues of abbassa freshwater	78
used in experiments:	
5.1.2. Estimation of heavy metals in fish muscles after 45days	81
5.2. Estimation of antioxidative parameters	83
5.3. Estimation of plasma lysozyme activity in Nile tilapia after 96hrs, 192hrs and	90
45 days	
5.4. Estimation of nuclear DNA damage using comet assay	91
5.5. Estimation of Plasma Protein Patterns using SDS-PAGE	95
5.6. The Conclusion	105
5.7. Recommendations	107
6. SUMMARY	108
7. REFERENCES	116
8. Arabic Summary	

List of Tables

NO. Title	Page
Table (1): The values of LC_{50} –96hrs for different genotoxic pollutants used for Nile tilapia fish.	26
Table (2): The values of $1/4$ LC ₅₀ –192hrs or 8 days for different genotoxic pollutants used for the Nile tilapia fish.	27
Table (3): The values of $1/10 \text{ LC}_{50}$ –45 days for different genotoxic pollutants used for the Nile tilapia fish.	28
Table (4): Composition of 12% resolving gel and 5% stacking gel.	49
Table (5): Optimal physicochemical parameters and heavy metal residues for freshwater used in experiments.	51
Table (6): Heavy metal residues in muscle tissue of control and treatments after45days exposure period.	53
Table (7): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and MDA) in gills and liver tissues of Nile tilapia after 4days exposure to applied pollutants.	54
Table (8): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and MDA) in gills and liver tissues of Nile tilapia after 8days exposure to applied pollutants.	56
Table (9): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and MDA) in gills and liver tissues of Nile tilapia after 45days exposure to applied pollutants.	57
Table (10): Lysozyme level of plasma of Nile tilapia for all experiments.	59
Table (11): Mean \pm S.E. of DNA damage (comet assay) in gills and liver of Nile tilapia fingerlings after 4days exposure period.	60
Table (12): Mean \pm S.E. of DNA damage (comet assay) in gills and liver of Nile tilapia fingerlings after 8days exposure period.	62
Table (13): Mean ± S.E. of DNA damage (comet assay) in gills and liver of Niletilapia fingerlings after 45days exposure period.	64
Table (14): Band number, relative front (mobility), molecular weights, monomorphic, polymorphic and unique bands for control and treatments after 96hrs.	67

Table (15): The dissimilarity Matrix values among control and treatments based	68
on band polymorphisms by SDS-PAGE after 96hrs.	
Table (16): Show range of Relative Front (mobility), Molecular Weights, total	68
bands and total polymorphism% for control and treatments after 96hrs.	
Table (17): Band Number, Relative Front (mobility), Molecular Weights,	70
Monomorphic, Polymorphic and Unique bands for control and treatments after	
192hrs.	
Table (18): The dissimilarity Matrix values among control and treatments based	70
on band polymorphisms by SDS-PAGE after 192hrs.	
Table (19): Show range of Relative Front (mobility), Molecular Weights, total	71
bands and total polymorphism% for control and treatments after 96hrs.	
Table (20): Band Number, Relative Front (mobility), Molecular Weights,	73
Monomorphic, Polymorphic and Unique bands for control and treatments after	
45days.	
Table (21): The dissimilarity Matrix values among control and treatments based	73
on band polymorphisms by SDS-PAGE after 45days.	
Table (22): Show range of Relative Front (mobility), Molecular Weights, total	74
bands and total polymorphism% for control and treatments through 45days.	
Table (23): Band Number, Relative Front (mobility), Molecular Weights,	76
Monomorphic, Polymorphic and Unique bands for bulked control and bulked	
treatments after 45days.	
treatments after 45days. Table (24): The dissimilarity Matrix values among bulked control and bulked	77
treatments after 45days. Table (24): The dissimilarity Matrix values among bulked control and bulked treatments based on band polymorphisms by SDS-PAGE after 45days.	77
treatments after 45days. Table (24): The dissimilarity Matrix values among bulked control and bulked treatments based on band polymorphisms by SDS-PAGE after 45days. Table (25): Show range of Relative Front (mobility), Molecular Weights, total	77
treatments after 45days. Table (24): The dissimilarity Matrix values among bulked control and bulked treatments based on band polymorphisms by SDS-PAGE after 45days. Table (25): Show range of Relative Front (mobility), Molecular Weights, total bands and total polymorphism% for bulked control and bulked treatments after	77 77

List of Figures

NO. Title	Page
Figure (1): Distribution of DNA in tail and head by Comet assay.	18
Figure (2): Nile tilapia fingerlings and its internal viscera.	24
Figure (3): Chemical structure of glyphosate.	24
Figure (4): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and	55
MDA) observed in gills and liver of Nile tilapia after 4days exposure period.	
Figure (5): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and	56
MDA) in gills and liver of Nile tilapia after 8 days exposure period.	
Figure (6): Mean \pm S.E. of antioxidative parameters (SOD, CAT, GST, GSH and	58
MDA) in gills and liver of Nile tilapia after 45days exposure period.	
Figure (7): Lysozyme activity levels of plasma of Nile tilapia after all	59
experiments.	
Figure (8): Mean \pm S.E. of DNA damage (comet assay) observed in gills and liver	61
of Nile tilapia fingerlings after 4days exposure period.	
Figure (9): Intact DNA profile of control group in gills and liver of Nile tilapia	61
fingerlings by comet assay.	
Figure (10): DNA damage profile of gills tissues after exposure to 96hrs	61
glyphosate, CdCl ₂ and mixture in Nile tilapia fingerlings by comet assay.	
Figure (11): DNA damage profile of liver tissues after exposure to 96hrs	62
glyphosate, CdCl ₂ and mixture in Nile tilapia fingerlings by comet assay.	
Figure (12): Mean \pm S.E. of DNA damage (comet assay) observed in gills and	63
liver of Nile tilapia fingerlings after 8days exposure period.	
Figure (13): DNA damage profile of gills tissues after exposure to 192hrs	63
glyphosate, CdCl ₂ and mixture in Nile tilapia fingerlings by comet assay.	

Figure (14): DNA damage profile of liver tissues after exposure to 192hrs	63
glyphosate, CdCl ₂ and mixture in Nile thapia ingerings by comet assay.	
Figure (15): Mean ± S.E. of DNA damage (comet assay) observed in gills and	65
liver of Nile tilapia fingerlings after 45days exposure period.	
Figure (16): DNA damage profile of gills tissues after exposure to 45days	65
glyphosate, CdCl ₂ and mixture in Nile tilapia fingerlings by comet assay.	
Figure (17): DNA damage profile of liver tissues after exposure to 45days	66
glyphosate, CdCl ₂ and mixture in Nile tilapia fingerlings by comet assay.	
Figure (18): SDS-PAGE patterns of plasma protein of O. niloticus after 96hrs for	67
control (c) and treatments of Glyphosate (G), Mixture (X) and Cadmium (Cd)	
adding to Marker protein (M).	
Figure (19): SDS-PAGE patterns of plasma protein of O. niloticus after 192hrs	69
for control (c) and treatments of Glyphosate (G), Mixture (X) and Cadmium (Cd)	
adding to Marker protein (M).	
Figure (20): SDS-PAGE patterns of plasma protein of O. niloticus after 45days	72
for control (c) and treatments of Glyphosate (G), Mixture (X) and Cadmium (Cd)	
adding to Marker protein (M).	
Figure (21): SDS-PAGE patterns of plasma protein of O. niloticus after 45days	75
for Bulked control and Bulked treatments of Glyphosate, Mixture and Cadmium.	