

Department of Poultry Diseases

"Evaluation of Different Commercial Vaccines, and Vaccinal Programs of Infectious Bronchitis Disease Used in Broiler Chickens"

Thesis Presented by

Mervat Masoud Mohamed Alí

B.V.Sc. - Assiut University -2009 M.V.Sc. - Avian and Rabbit Diseases - Assiut University- 2015

For PhD

Avian and Rabbit Diseases

Under supervision of

Prof. Dr. Awad Abd El-Hafez Ibrahím

Professor Emeritus of Poultry Diseases Faculty of Veterinary Medicine Assiut University

Prof. Dr. Tolba Younes Abd El-Motlb

Professor Emeritus of Poultry Diseases Faculty of Veterinary Medicine Assiut University

Prof. Dr. Azhar Mohamed Abd-El Azíz

Chief Researcher of Poultry Diseases Department Animal Health Research Institute, Assiut Branch

2020

Contents

No.	Page
List of abbreviations	Ι
List of tables	IV
List of figures	V
1. Introduction	1
2. Literature Review	5
2. 1. Infectious bronchitis history	5
2. 2. IBV status in Egypt	6
2. 2. 1. Sorting of Egyptian IBV isolates	10
2. 2. 2. IBV vaccines in Egypt	11
2. 3. IB associated economic losses	11
2. 4. Etiology	12
2. 4. 1. Taxonomic classification	12
2. 4. 2. Morphological and Chemical characters	12
2. 4. 3. IBV strains classification	13
2. 4. 3. 1. Available IBV strain classification types	14
2. 4. 3. 1. 1. Immunotyping (=Protectotyping)	14
2. 4. 3. 1. 2. Pathotyping	15
2. 4. 3. 1. 3. Serotyping (the classical functional	15
typing system)	
2. 4. 3. 1. 4. Genotyping	15
2. 4. 3. 1. 4. 1. The common available	16
genotyping methods	
2. 4. 3. 1. 4. 1. a. Genotype-specific RT-PCR	16
2. 4. 3. 1. 4. 1. b. Sequencing	16
2. 4. 3. 1. 4. 1. c. Restriction enzyme fragment	17
length polymorphism (RFLP)	
2. 4. 3. Relationship between IBV serotypes,	17
protectotypes, and genotypes	
2. 4. 3. 1. Relationship between serotype and	17
protectotype	
2. 4. 3. 2. Relationship between serotype and	18

Contents

aanatuna	
genotype	18
2. 4. 3. 3. Relationship between genotype and	10
protectotype	10
2. 5. IB Epidemiology	19
2. 5. 1. Incidence and distribution	19
2. 5. 2. Natural and experimental hosts	19
2. 5. 3. Transmission, carrier and latency	19
2. 5. 4. clinicopathological features of IB	20
2. 5. 4. 1. Respiratory IB	20
2.5.4. 2. Urinary IB	20
2. 5. 5. Concurrent IB infections	21
2. 6. Diagnosis	21
2. 6. 1. Tentative diagnosis of IB	22
2. 6. 1. 1. Signs	22
2. 6. 1. 2. Gross lesions	22
2. 6. 1. 3. Histopathology	23
2. 6. 2. Confirmatory diagnosis of IB	24
2. 6. 2. 1. Isolation and identification of the	
causative agent	
2. 6. 2. 1. A. Sampling/ specimen collection	24
2. 6. 2. 1. B. Virus isolation	25
2. 6. 2. 1. C. Detection of IBV antigen	25
A. Agar-gel precipitation (AGP) test	26
B-Immunofluorescent assay (IFA)	26
C- Immunoperoxidase assay (IPA)	26
2. 6. 2. 1. D. Detection of IBV antibody	27
1. Virus neutralization (VN) test	27
2. Haemagglutination inhibition (HI)	27
test	
3. Enzyme Linked Immunosorbent Assay	
(ELISA)	
2. 6. 2. 1. E. Detection of IBV genome (RNA)	
by PCR	
2. 7. Immunity	30

2. 7. 1. Passive immunity	30
2. 7. 2. Active immunity	30
2. 7. 2. 1. Local immunity	31
2. 7. 2. 2. Systemic immune responses	32
2. 7. 2. 2. a. Humoral immunity	32
2. 7. 2. 2. b. Cellular immunity	33
2. 8. Intervention strategies	34
2. 8. 1. Management procedures	34
2. 8. 2. Vaccination	34
2. 8. 2. 1. Vaccines	35
2. 8. 2. 1. A. Live vaccine	35
2. 8. 2. 1. B. Inactivated vaccines	36
2. 8. 2. 1. C. Future (Genetic engineering)	36
vaccines	
2. 8. 2. 1. C. 1. Subunit vaccine	36
2. 8. 2. 1. C. 2. Vector vaccines (Recombinant	37
Vaccines)	
2. 8. 2. 1. C. 3. Peptide and DNA Vaccines	37
2. 8. 2. 2. Vaccination trials for protection	38
against the IBV strains	
3. Material and Methods	
3. 1. Material	
3. 1. 1. Material for sampling	43
3. 1. 2. Material for PCR	43
3. 1. 3. Buffers, media, and solutions	44
3. 1. 4. Fine chemicals	45
3. 1. 5. Experimental hosts	46
3. 1. 6. Infectious bronchitis virus strains	46
3. 1. 7. Solutions and buffers for HA	47
3. 1. 8. Samples and reagents for histopathology	47
3. 2. Methods	48
Part 1: Molecular characterization of the IBV implicated	48
in recent IB	
outbreaks among broiler flocks in Egypt	

Contents

3. 2. 1. Preparation of samples for IBV detection	48
and isolation	
3. 2. 2. RNA extraction	48
3. 2. 3. Real Time-RT-PCR (RRT-PCR)	48
3. 2. 4. Virus isolation and propagation	51
3. 2. 4. 1. Embryonated chicken egg inoculation	51
3. 2. 4. 2. Titration of infectious bronchitis virus	51
isolates	
3. 2. 5. S1 (HVR 3) amplification and sequencing	51
3. 2. 6. Phylogenetic analysis	54
Part 2: Evaluation of the protection conferred by	
attenuated live IBV vaccines against an isolated Egyptian	
variant IBV isolate	
4. Results	59
5. Discussion	
6. Summary and conclusion	
7. References	88
8. Arabic Summary	Ι

List of abbreviations approximations

List of abbreviations

AGP	Ager gel precipitation
	Antigen
Ag AGID	Anugen Agar Gel Immunodiffusion
AGID	
	Agar Gel precipitation test Arkansas
Ark 99	
Arg	Argnine
aMPV	Avian metapnemovirus
bP	Base pair
BLAST	Basic Local Alignment Search Tool
CAM	chorioallantoic membrane
cDNA	copy- DNA
CE	chicken embryo
CEK	chicken embryo kidney
C-ELISA	antigen-capture ELISA
CEF	Chicken embryo fibroblast
CEK	Chicken embryo kidney
CDC	Centers for disease control and prevention
СН	Challenged
CIS	Crossimmunization study
CMI	Cell mediated immune response
CIT	Cross-immunization test
Conn 46	Connecticut
CRBCs	chicken red blood cells
CNV	Challenged non-vaccinated
СТ	Threshold cycle
DFA	Direct fluorescent antibody
DNA	Deoxyribonucleic acid
dpi	Day post-infection
DW	Distilled water
ELISA	Enzyme Linked Immunosorbent Assay

List of abbreviations abbreviations

EM	Electron Microscopy
ECE	Embryonated chicken eggs
Ε	Envelope protein
EDTA	Ethylene diamine tetra acetic acid
Egy.	Egypt
EID50	Embryo infective dose fifty
EMBL	European Molecular Biology Laboratory
GI	Genomic identification
Glu	Glutaraldehyde
GOVS	General organization for veterinary services
НА	Haemagglutination
HEPA	High Efficiency Particulate Air
HI	Haemo agglutination inhibition
HG	Harderian gland
H&E	Hematoxylin and eosin
HVT	Herpesvirus of turkeys
HVR	Hyper- variable region
IBD	Infectious bursal disease
IBV	Infectious bronchitis virus
IFA ML	Immunofluorescence assay maximum likelihood
ILT	Infectious laryngotracheitis
Igs	Immunoglubulines
IPA	Immunoperoxidase assay
Μ	Membrane glycoprotein
Mabs	Monoclonal antibodies
Mass41	M41
MEM	Minimal Essential Medium
MG	Mycoplasma gallicepticum
MS	Mycoplasma synoviae
MP	Membrane protein
Min	Minutes
mRNA	Messenger RNA
Ν	Nucleocapsid protein

List of abbreviations abbreviations

NDV	Newcastle disease virus
NIBV	Nephropathogenic IBV
OIE	Office des epizootic international
PHA	Passive Haemagglutination
PCR	Polymerase chain reaction
PI	Post-inoculation
PBS	Phosphate buffer saline
PI	Post inoculation
PM	Post-mortem
RBD	Receptor binding domain
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid.
RNP	Ribo nucleoprotein complex
RRT-PCR	Real-Time Reverse transcriptase-PCR
SN	Serum neutralization test
Sec	Seconds
S1	Spike 1
Ser	Serine
SPF	Specific pathogen free
TBE	Tris- Borate EDTA
TCoV	Turkey coronavirus
ТОС	Tracheal organ culture
Var	Variant
VN	Virus neutralization
UTR	Untranslated region

List of tables

No.	Table title	Page
	Location and number of farms, age, mortality % and	43
Table 1	vaccination status of the examined chicken flocks in the	
	current study	
Table 2	Primers and probe used in IBV amplification	46
Table 3	IBV live vaccines used in the current study	47
Table 4	The used IBV strains with GenBank accession numbers	55
Table 5	Experimental groups	56
Table 6	Results of IBV screening using RRT-PCR	62
Table 7	Egyptian infectious bronchitis viruses isolated and	65
	characterized in this study	
Table 8	Protection evaluation afforded by different vaccination	69
Table o	groups	

List of Figures

No.	Figure title	Page
Figure 1	Broiler chicken with congested and enlarged kidney; congested lung with congested trachea; trachea with severe congestion; and caseated plug in tracheal bifurcation	60
Figure 2	congestion; and caseated plug in tracheal bifurcation 16 days old embryos showing curling and dwarfing after IBV 5blind passages in comparison to control non-inoculated embryo	61
Figure 3	IBV screening using RRT-PCR in all flocks (Vaccinated and non-vaccinated)	62
Figure 4	Amplification curve for IBV samples using RRT-PCR	63
Figure 5	Reverse transcription-PCR product of S1 gene of IBV from RRT-PCR IBV positive allantoic fluids	63
Figure 6	Sequence alignment for the amino acids of S1 gene for the isolates of the study; vaccinal strains and the reference strains	66
Figure 7	Amino acid identities of infectious bronchitis virus Egyptian isolates with other selected references and vaccinal strains from different serotypes	67
Figure 8	Phylogenetic tree representing the partial amino acid sequences of the S1 gene for 5 avian infectious bronchitis virus isolates (marked with black circle) with other related infectious bronchitis virus and vaccinal strains	68
Figure 9	Protection levels afforded by different vaccination groups	70
<i>Figure</i> 10a	Photomicrograph of non-challenged broiler chicken's tracheal section showed intact ciliated epithelium with normal mucous glands (H&E, X10)	72
<i>Figure</i> 10b	Tracheal section from control non-challenged broiler chicken showing intact ciliated epithelium with mucous glands (H&E, X 40)	73
Figure 11a	Tracheal section from control challenged broiler chicken	73

List of figures

	showing epithelial and glandular degeneration and	
	necrosis, with hemorrhage, and edema in lamina propria	
	(H&E, X 40)	
<i>Figure</i> 11b	tracheal section from control challenged broiler chicken	74
	showing epithelial necrosis, complete deciliation, dense	
	sub-epithelial lymphocytic cells infiltration and edema	
	(H&E, X40)	
	Tracheal section from broiler chicken vaccinated with	74
<i>Figure</i> 12a	live vaccine (D274+H120) at 1day plus H120 vaccine at	
1 igure 12a	14 days showing more or less normal intact ciliated	
	epithelial cells and mucous glands (H&E, X10).	
	Tracheal section from broiler chicken vaccinated with	75
<i>Figure</i> 12b	live vaccine (D274+H120) at 1day plus H120 vaccine at	
<i>I igure</i> 120	14 days showing more or less normal intact ciliated	
	epithelial cells (H&E, X 40)	
	Tracheal section from broiler chicken vaccinated live	75
	vaccine 1212B at 1day plus H120 vaccine at14 days	
Figure 13a	showing deciliation, degeneration and necrosis of lining	
rigure 15a	epithelium and mucous glands and sub-epithelial edema	
	with inflammatory cells infiltration in lamina propria	
	and sub mucosa (H&E, X10)	
	Tracheal section from broiler chicken vaccinated with	76
	live vaccine 1212B at 1day plus H120 vaccine at14 days	
Figure 13b	showing deciliation, degeneration and necrosis of lining	
	epithelium and mucous glands with sub-epithelial edema	
	and inflammatory cells infiltration in lamina propria	
	and sub mucosa (H&E, 40x)	

Summary & Conclusion

6- Summary and conclusion

In this study the prevalence of IB among Egyptian chicken broiler farms was studied by examination of 100 chicken broiler farms distributed in 4 governorates (Assiut, Sohag, El-minia, and El-Wady El-Gadid) during the period from 2017 to 2018 using RRT-PCR. It was found that 75/100 (75%) of the flocks were positive for IBV. In relation to the vaccination, the results showed that 57flocks were vaccinated with H120 live vaccine at one - day old and IBV were found in 43 of them with percent 75%. While in the non-vaccinated flocks (43 broiler flock) there were 32 flocks found to be infected with IBV with percent of 74%. It is clear that the percentage of infection in non-vaccinated flocks is higher than that reported in vaccinated ones.

The clinical examination of the investigated flocks revealed general signs of illness, respiratory signs and renal problems in some flocks. The respiratory signs ranged from mild to severe, gasping, sneezing, rales and coughing. Mortality rates ranging from 4-12 %. At necropsy, the main lesions found were tracheitis, lung congestion, and air-sacculitis. Some flocks frequently showed mucous or caseated material in trachea and bronchi. Pale or congested and enlarged kidneys with slight to moderate distention of the ureters with urates were also seen. The results of virus isolation of IBV in 9-11 day old ECE showed that the virus causes subcutaneous haemorrhage, curling and dwarfing after five several passages.

In the present study, partial S1 gene flanking the HVR 3 was amplified and used for typing the field isolates in Egypt. Five IBV isolates from different commercial poultry farms in Upper Egypt were analyzed by sequencing of the HVR 3 in S1 gene. The molecular data indicated that the IBV isolated in Upper Egypt from 2017 to 2018 were related to each other (90-98% identity) and according to phylogenetic analysis

Summary & Conclusion

isolates are found to be closely related to the variant isolates and were clustered within the Egy/Var- || subgroup (IBV-Eg-12120s-2012 and IBV/IS/885-00) and other Egyptian related strains deposited in the GenBank database.

By performing in vivo protection study, it was possible to demonstrate the level of protection of currently available live IBV Massachusetts, 793/B (1/96), (Mass/D274) and 1212B (IBVAR2) vaccine strains. The highest protection afforded by the vaccination program (D274-H120)-H120 with protection 40%, while the lowest effective vaccination program was 1212B-H120 with protection 17.3% after challenge with the isolated strain using ciliary activity, and histopathology.

In conclusion, according to this work, no vaccine regime used in the current study was able to fully protect vaccinated chickens from the current circulating variant viruses of IBV in Egypt. However, different degrees of protection have been obtained. It is recommended to design vaccination programs using respiratory virus vaccines, including Newcastle disease virus, avian influenza and infectious bronchitis, in addition to standard management practice must be performed to avoid the secondary bacterial infections. It was shown that the immunity against IBV is more complex so more work is needed to establish the underlying immune mechanisms for such higher and broader protection conferred by this vaccination programme.