

ASSESSMENT OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR THE CONTROL OF THE WHITEFLY *BEMISIA TABACI* (GENN.) ON CANTALOUPE CULTIVARS

A Thesis submitted to the Department of Entomology, Faculty of Science, Ain Shams University for the award of the Ph.D. Degree

Entomology

By

Yomna Nabil Mohamed Abd Allah

Assistant Researcher - Plant Protection Research Institute M.Sc.Zoology (Entomology)-Faculty of Science - Zagazig University

Supervisored by

Prof Dr. Bahira Mahmoud El Sawaf

Emeritus Professor of Entomology - Entomology Department - Faculty of Science-Ain Shams University

Prof Dr. Baraka Mohsen Refaei

Professor of Entomology- Entomology Department - Faculty of Science - Ain Shams University

Prof Dr. Samia Ahmed Galal Metwally

Emeritus Chief Researcher- Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Department- Plant Protection Research Institute.-Agricultural Research Center

Prof Dr. Soad Ali Ibrahim

Emeritus Chief Researcher- Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Department- Plant Protection Research Institute.-Agricultural Research Center

(2019)

LIST OF CONTENTS

Title	Page
ABSTRACT	9-
1.INTRODUCTION	1
2. LITERATURE REVIEW	7
2.1. Distribution and effect of <i>B. tabaci</i> damage on different cultivated crops	7
2.2. Relative susceptibility of different cantaloupe cultivars and growth stages to infestation with <i>B. tabaci</i> in respect to physiological and morphological traits	8
2.3. Effect of different sowing dates, climatic factors and plant age on <i>B. tabaci</i> infestation	20
2.4. Effect of different rates of inorganic fertilizers on <i>B. tabaci</i> population	27
2.5.Effect of aromatic plants on the population of <i>B. tabaci</i>	29
3. MATERIALS AND METHODS	33
3.1.Field studies	33
3.1.1. Impact of the four tested cultivars on infestation of cantaloupe with the whitefly; <i>B. tabaci</i> and the resultant yield	34
3.1.2. Effect of cantaloupe growth stages on the whitefly; <i>B. tabaci</i> preference	35
3.1.3.Interaction between different sowing dates and cantaloupe cultivars on the whitefly; <i>B. tabaci</i> and the resultant yield	36
3.1.4. Interaction between different sowing dates, certain weather variables and plant age on the whitefly, <i>B. tabaci</i> activity	37
3.1.5. Effect of different rates of inorganic fertilizers on <i>B. tabaci</i> infestation and the resultant yield	37
3.1.6. Intercropping cantaloupe with certain non-host aromatic plants	39
3.2. Laboratory studies	43
3.2.1.Morphological aspects as shown by scanning electron micrographs	43
3.2.1.1.Morphological features in respect to trichome analysis; leaf trichomes density and length	43
3.2.1.2. Morphological aspects in respect to leaf stomata density and dimensions	44
3.2.2. Physiological studies	45
3.2.2.1.Chemical analysis of the four tested cultivars to determine certain biochemical elements and moisture content	45
3.2.2.2. Chemical analysis of the four cultivars to determine certain enzymes	51

3.3. Meteorological data	54
3.4. Data analysis	54
4. RESULTS	56
4.1. Assessment the performance of cantaloupe cultivars under	56
B. tabaci attack	30
4.1.1. Preference of cultivars for oviposition over 2015	56
4.1.2. Preference of cultivars for nymphal infestation over	57
2015	57
4.1. 3. Preference of cultivars for oviposition over 2016	59
4.1.4. Preference of cultivars for nymphal infestation over	60
2016	00
4.1.5. Preference of cultivars for oviposition over 2017	62
4.1.6. Preference of cultivars for nymphal infestation over	63
2017	05
4.1.7. Preference of cultivars for oviposition and nymphal	65
infestation over the three studied seasons	05
4.1.8 Effect of infestation rates on the resultant yield	66
4.2. Effect of cantaloupe growth stages on the whitefly; <i>B</i> .	69
tabaci preference	07
4.2.1. Difference between the four cantaloupe cultivars in	69
early and late stages in relation to oviposition preference	07
4.2.2. Difference between the four cantaloupe cultivars in	70
early and late stages in relation to nymphal infestation.	70
4.2.3. Preference of cantaloupe stages for oviposition and	72
nymphal infestation	12
a. Preference of stages for oviposition	72
b. Preference of stages for nymphal infestation	72
4.3. B. tabaci infestation in relation to morphological aspects and	73
biochemical constitutes of cantaloupe cultivars	15
4.3.1.Morphological characters as shown by scanning electron	70
microscope (SEM)	73
4.3.1.1. Effect of leaf trichomes density and length in	
cantaloupe cultivars on laying <i>B. tabaci</i> eggs in the early stage	74
r	

4.3.1.2. Effect of leaf trichomes density and length in cantaloupe cultivars on laying <i>B. tabaci</i> eggs in the late stage	78
4.3.1.3. Oviposition preference in relation to trichomes in cantaloupe early and late stages	82
4.3.1.4. Leaf stomata in cantaloupe cultivars	83
4.3.2. Leaf chemical compositions, moisture content and enzymes in cantaloupe cultivars and <i>B. tabaci</i> infestation	92
4.3.2.1. Biochemical elements and moisture contents in the tested cultivars in cantaloupe early and late stages	92
a.Total protein	92
b. Total carbohydrates	93
c. Moisture content	94
d. Reduced sugars	95
e. Non-reducing sugars	96
f. Total sugars	97
g. Potassium	98
h. Phosphorous	99
i. Total phenols	100
4.3.2.2. Enzymes activity in the tested cultivars in cantaloupe early and late stages	101
a. Alpha-esterases	101
b. Phenoloxidase	102
c. Peroxidase	103
4.3.2.3.Correlation between biochemical elements and nymph infestation in cantaloupe early and late stages	105
4.3.2.4.Correlation between biochemical elements, moisture content and enzymes activity and nymphs infesting the four cantaloupe cultivars	107
4.3.2.5. The role of tannin in relative resistance of cantaloupe cultivars against <i>B. tabaci</i> infestation	110
4.4. Interaction effect of cantaloupe cultivars and sowing date on <i>B. tabaci</i> infestations and yield parameters	111
4.4.1. Oviposition preference of <i>B. tabaci</i> in relation to cantaloupe sowing date and cultivars over three seasons	111
4.4.2. Nymphal infestation of <i>B. tabaci</i> in relation to cantaloupe sowing date and cultivars over three seasons	117
4.4.3. Interaction between cantaloupe cultivars and sowing date on the resultant yield	123

4.5. Interaction between certain weather factors and plant age on	105
<i>B. tabaci</i> infestation	125
4.5.1. Effect of weather factors and plant age on deposited <i>B</i> .	125
tabaci eggs in different sowing dates	123
4.5.2. Effect of weather factors and plant age on nymphal	136
activity in different sowing dates	150
4.6. B. tabaci infestation and yield production in relation to	143
inorganic fertilization (NK)	145
4.6.1. Effect of different inorganic fertilization rates on nymphal	143
infestation	145
4.6.2. Effect of the combination of inorganic fertilizer rates on	147
cantaloupe yield	147
4.7. Reducing B. tabaci infestations using intercropping with	149
three non- host aromatic plants	149
4.7.1.Effect of intercropping cantaloupe on <i>B. tabaci</i>	149
oviposition preference	147
4.7.2. Effect of intercropping cantaloupe on <i>B. tabaci</i> nymphal	151
infestation	131
5. DISCUSSION	154
CONCLUSIONS AND RECOMMEDNATIONS	169
6. SUMMARY	172
7. REFERENCES	182
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2015 summer	58
	plantation season.	
2	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2016 summer	61
	plantation season.	
3	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2017 summer	64
	plantation season.	
4	Effect of <i>B. tabaci</i> infestation on the resultant yield of the four	67
	cantaloupe cultivars over 2015.	07
5	Mean numbers of stomata/1mm ² and dimensions (length and	
	width) (μ m) of cantaloupe cultivars in relation to mean	85
	\pm SE of <i>B. tabaci</i> egg numbers in the early stage over	05
	2019 summer plantation.	
6	Correlation between biochemical components and nymphal	106
	infestation in cantaloupe early and late stages.	100
7	Correlation between enzymes activity and nymphal	106
	infestation in cantaloupe early and late stages.	
8	Correlation coefficient (r) between certain leaf chemical	
	compositions, moisture content and enzymes in leaves	109
	of four cantaloupe cultivars and mean count of <i>B. tabaci</i>	
	nymphs in 2016.	
9	<i>B. tabaci</i> mean number of eggs/leaf on different cultivars over	112
10	three summer plantation sowing dates (2015).	
10	<i>B. tabaci</i> mean number of eggs/leaf on different cultivars over	113
11	three summer plantation sowing dates (2016).	
11	<i>B. tabaci</i> mean number of eggs/leaf on different cultivars over	114
10	three summer plantation sowing dates (2017).	
12	Average of <i>B. tabaci</i> eggs/leaf on the four cultivars over 2015, 2016 and 2017 three summer plantation sources dates	116
12	2016 and 2017 three summer plantation sowing dates.	
13	<i>B. tabaci</i> mean number of nymphs/leaf on different cultivars	117
14	over three summer plantation sowing dates (2015).	
14	<i>B. tabaci</i> mean number of nymphs/leaf on different cultivars	119
	over three summer plantation sowing dates (2016).	

		_
15	<i>B. tabaci</i> mean number of nymphs/leaf on different cultivars over three summer plantation sowing dates (2017)	120
16		
16	Average of <i>B. tabaci</i> nymphs/leaf on different cultivars over 2015, 2016 and 2017 three summer plantation sowing	122
	dates.	
17	Mean of yield production (kg) per plot of cantaloupe cultivars over three summer plantation sowing dates (2015).	124
18	Mean values of temperatures and relative humidity registered in the weeks of sampling of <i>B. tabaci</i> eggs or nymphs on cantaloupe in the three sowing dates over 2015 summer plantation season in Qaha, Qalyubiya Governorate.	130
19	Multiple regression of abiotic factors and plant age on <i>B. tabaci</i> egg numbers in different sowing dates over 2015.	131
20	Mean values of temperatures and relative humidity registered in the weeks of sampling of <i>B. tabaci</i> eggs or nymphs on cantaloupe in the three sowing dates over 2016 summer plantation season in Qaha, Qalyubiya Governorate.	132
21	Multiple regression of abiotic factors and plant age on <i>B.</i> <i>tabaci</i> egg numbers in different sowing dates over 2016.	133
22	Mean values of temperatures and relative humidity registered in the weeks of sampling of <i>B. tabaci</i> eggs or nymphs on cantaloupe cultivars in the three sowing dates over 2017 summer plantation season in Qaha, Qalyubiya Governorate	134
23	Multiple regression of abiotic factors and plant age on <i>B.</i> <i>tabaci</i> egg numbers in different sowing dates over 2017.	135
24	Multiple regression of abiotic factors and plant age on <i>B.</i> <i>tabaci</i> nymphal infestation in different sowing dates over 2015.	140
25	Multiple regression of certain abiotic factors and plant age on <i>B. tabaci</i> nymphal infestation over 2016 summer plantation season.	141
26	Multiple regression of abiotic factors and plant age on <i>B.</i> <i>tabaci</i> nymphal infestation over 2017 summer plantation season.	142

LIST OF FIGURES

No.	Title	Page
1	Display distribution of whitefly; B. tabaci world wide.	8
2	The four tested cantaloupe cultivars.	35
3	Intercropping of cantaloupe with aromatic plants.	42
4	Scanning Electron Microscope Model Quanta 250 FEGF.	44
5	Mean numbers (\pm SE) of <i>B. tabaci</i> eggs and nymphs per leaf on the four cantaloupe cultivars over 2015 summer plantation	59
	season.	
6	Mean numbers (\pm SE) of <i>B. tabaci</i> eggs and nymphs per leaf in the four cultivars over 2016 summer plantation season.	62
7	Mean numbers (\pm SE) of <i>B. tabaci</i> eggs and nymphs per leaf in the four cantaloupe cultivars over 2017 summer plantation season.	65
8	Average mean numbers (\pm SE) of <i>B. tabaci</i> eggs and nymphs per leaf on the four cantaloupe cultivars over summer plantation season of 2015, 2016 and 2017.	66
9	Weight of cantaloupe fruits of the tested cultivars over 2015 summer plantation season.	68
10	Correlation between mean number of <i>B. tabaci</i> eggs and nymphs and cantaloupe weight over 2015.	68
11	Difference between the four cultivars in early and late stages in relation to oviposition preference over 2015, 2016 and 2017.	70
12	Difference between the four cultivars in early and late stages in relation to nymphal infestation over 2015, 2016 and 2017.	71
13	Mean number of <i>B. tabaci</i> eggs and nymphs in early and late cantaloupe stages over 2015, 2016 and 2017.	73
14	Correlation between mean number of trichomes/1 mm ² and eggs on Arava, Majus, Darvina and Royal 481cultivars in the early stage.	75
15	Correlation between mean trichomes length (μ m) and eggs on Arava, Majus, Darvina and Royal 481 cultivars in the early stage.	75
16	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Arava cultivar during the early stage.	76
17	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Majus cultivar during the early stage.	76
18	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Darvina cultivar during the early stage.	77

Commission allocations and a set of some local set of some	
	77
	77
	79
in the late stage.	
Correlation between trichomes length (μm) and mean number of	
eggs on Arava, Majus, Darvina and Royal 481 cultivars in the late	79
stage.	
	80
0	
	80
	00
	81
• • •	01
	01
	81
0	
	82
5	
	83
· · ·	
	86
	86
	87
number of eggs on Arava, Majus, Darvina and Royal 481	87
cultivars.	
Scanning electron micrographs of leaf stomata in Arava cultivar	88
during the early stage.	00
Scanning electron micrographs of leaf stomata in Majus cultivar	00
during the early stage.	89
Scanning electron micrographs of leaf stomata in Darvina	00
cultivar during the early stage.	90
	Correlation between trichomes length (μm) and mean number of eggs on Arava, Majus, Darvina and Royal 481 cultivars in the late stage. Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Arava cultivar during the late stage. Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Majus cultivar during the late stage. Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Darvina cultivar during the late stage. Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Darvina cultivar during the late stage. Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Royal 481 cultivar during the late stage. Difference between mean number of eggs in cantaloupe early and late stages. Correlation between trichomes density and length in early and late stages. Correlation between opened stomata percentages and mean number of eggs on Arava, Majus, Darvina and Royal 481 cultivars. Correlation between closed stomata percentages and mean number of eggs on Arava, Majus, Darvina and Royal 481 cultivars. Correlation between mean of stomata length (μm) and mean number of eggs on Arava, Majus, Darvina and Royal 481 cultivars. Correlation between mean of stomata length (μm) and mean number of eggs on Arava, Majus, Darvina and Royal 481 cultivars.

		i
35	Scanning electron micrographs of leaf stomata in Royal 481 cultivar during cantaloupe early stage.	91
36	Total protein content (mg/ gm dry wt.) in the four cantaloupe cultivars in early and late stages.	93
27		
37	Total carbohydrates content (mg/gm dry wt.) in the four cantaloupe cultivars in early and late stages.	94
38	Moisture content (mg/gm dry wt.) in the four cantaloupe cultivars	
30	in early and late stages.	95
39	Reduced sugar content (mg/gm dry wt.) in the four cantaloupe	
07	cultivars in early and late stages.	96
40	Non- reducing sugars (mg/ gm dry wt.) in the four cantaloupe	07
	cultivars in early and late stages.	97
41	Total sugars (mg/ gm dry wt.) in the four cantaloupe cultivars in	08
	early and late stages	98
42	Potassium content (uEq/gm dry wt.) in the four cultivars in early	99
	and late stages.	77
43	Phosphorous content ($\mu g/gm dry wt$.) in the four cultivars in early	100
	and late stages.	100
44	Total phenols content (mg/gm dry wt.) in the four cultivars in early	101
	and late stages.	
45	Alpha esterases activity ($\mu g \alpha$ -naphyhol/min/gm in fresh wt.) in the four control one cultivers in carly and late stages	102
47	the four cantaloupe cultivars in early and late stages.	
46	Phenoloxidase activity (O.D. units/min/gm/leaf fresh wt.) in the four cultivars in early and late stages	103
47	four cultivars in early and late stages. Peroxidase activity (Δ_{430} O.D./min/ gm /leaf fresh wt.) in the	
4/	four cultivars in early and late stages.	104
48	Tannins content (μ g/gm) in the four cantaloupe cultivars.	110
		110
49	Seasonal mean counts of <i>B. tabaci</i> eggs/leaf on the four cultivars	112
	over 2015 three summer plantation sowing dates.	
50	Seasonal mean counts of <i>B. tabaci</i> eggs/leaf on the four cultivars	113
	over 2016 three summer plantation sowing dates.	
51	Seasonal mean counts of <i>B. tabaci</i> eggs/leaf on the four cultivars	115
	over 2017 three summer plantation sowing dates.	113
52	Seasonal mean counts of <i>B. tabaci</i> eggs/leaf on the four cultivars	11.5
	over 2015, 2016 and 2017 three summer plantation sowing dates.	116
53	Seasonal mean of population density of <i>B. tabaci</i> nymphs/ leaf on	
	the four cultivars over 2015 three summer plantation sowing	118
	dates.	110
54		
34	Seasonal mean population density of <i>B. tabaci</i> nymphs/leaf on the	119
	four cultivars over 2016 three summer plantation sowing dates.	

n		n
55	Seasonal mean population density of <i>B. tabaci</i> nymphs/leaf on different cultivars over 2017 three summer plantation sowing dates.	121
56	Seasonal mean population density of <i>B. tabaci</i> nymphs/leaf on different cultivars over 2015, 2016 and 2017 three summer plantation sowing dates.	122
57	Mean of yield production (kg.) in 11.9m -2 of the four cultivars over 2015 three summer plantation sowing dates.	124
58	<i>B. tabaci</i> infestation in relation to nine rates of NK in combination (40, 50 and 60 units).	146
59	Mean population of <i>B. tabaci</i> nymphs/leaf on cantaloupe under nine rates of NK fertilizer combinations and control over 2015 and 2017 summer plantations and average of the two years.	147
60	Mean counts of <i>B. tabaci</i> nymphs/leaf of cantaloupe plants which received different rates of NK fertilizers in combination over 2015 and 2017 summer plantations.	148
61	Mean seasonal counts of <i>B. tabaci</i> eggs/leaf of cantaloupe intercropped with garlic, dill or coriander versus monoculture of cantaloupe over 2015 Nili plantation.	150
62	Mean seasonal counts of <i>B. tabaci</i> eggs/leaf of cantaloupe intercropped with garlic, dill, coriander versus monoculture of cantaloupe over 2016 Nili plantation.	150
63	Mean seasonal counts of <i>B. tabaci</i> nymphs/leaf of cantaloupe intercropped with garlic, dill or coriander versus monoculture of cantloupe over 2015 Nili plantation.	152
64	Mean seasonal counts of <i>B. tabaci</i> nymphs/ leaf of cantaloupe intercropped with garlic ,dill or coriander versus monoculture of cantaloupe over 2016 Nili plantation.	152
65	Mean seasonal reduction percentages of <i>B. tabaci</i> eggs and nymphs/leaf of cantaloupe intercropped with garlic, dill or coriander versus monoculture of cantaloupe over 2015 and 2016 Nili plantation.	153

ABSTRACT

Cantaloupe, *Cucumis melo* L. (Family: Cucurbitaceae) is a commercially one of the most important tasty, nutritional summer vegetable crop cultivated in Egypt and many countries world wide. The whitefly; *B. tabaci* Genn. (Hemiptera: Homoptera: Aleyrodidae) is one of the most serious pests attacking cantaloupe.

Field studies were carried out over 2015, 2016 and 2017 summer plantations and 2015 and 2016 Nili plantations in Qaha, Qalyubiya Governorate to plan for an effective IPM program of the whitefly in Egypt. The relative susceptibility of four tested cantaloupe cultivars; Arava, Majus, Darvina and Royal 481 was assessed. Arava and Majus hosted the lowest *B. tabaci* eggs and nymphs. Darvina was the most susceptible cultivar especially to nymph population. Royal 481 hosted the highest deposited eggs number. Cantaloupe growth stages were represented here as: early stage (younger leaves) and late stge (older leaves). The early stage received more eggs than the late one in all tested cultivars. Majus and Royal 481 gave the highest yield.

The morphological cultivars traits clarified the rejection or attractaion features found in cantaloupe leaves. The lowest infested cultivar "Majus" has high trichomes' density. Royal 481 has lowest density and longest trichomes', which facilitate adults landing to lay eggs and feed. Long trichomes can act as shelters for *B. tabaci* immature stages.

The highest opened leaf stomata numbers was recorded in Arava and Majus and the highest number of closed ones was recorded in Darvina and Royal 481.

The chemical analysis across growth stages, as well as, certain biochemical elements, moisture content, and enzymes of cultivars revealed that, Majus had highest levels of reducing sugars, potassium, tannins, phenoloxidase and peroxidase enzymes. Majus cultivar also showed lower levels of carbohydrates, non-reducing sugar, total sugars and moisture content. Darvina had higher levels of carbohydrates, non-reducing, total sugars, moisture content and the lowest levels of phenoloxidase and peroxidase. Royal 481 was found to have higher levels of carbohydrates, non-reducing and total sugars and the lowest phenols and tannins contents.

The interaction between the three tested sowing dates (March 16, April 2 and April 16) and the four tested cultivars revealed that the best sowing date for Majus and Royal 481 was March 16 which resulted in highest yields.

Comparing the effect of weather factors and plant age (over the three tested sowing dates) on egg oviposition and nymphal infestation indicated that, plant age had more significant role compared to weather factors.

Application of low nitrogen rate and high potassium one (as fertilizers) reduced infestation rate to 2.8 nymphs/leaf and resulted in highest yield as 4.01 kg/plot (i.e. 3.97 m^2).

Intercropping with non-host aromatic plants; garlic, dill or coriander in cantaloupe field gave promising results in reducing *B. tabaci* egg oviposition and nymphal infestation in open field.

Key words: Bemisia tabaci, Cucumis melo, IPM.