Efficiency of biocompatible quantum dots for cellular imaging using confocal laser scanning microscope

THESIS

Submitted for fulfillment of the Ph. D. Degree In Department of Laser Applications in Metrology, Photochemistry and Agriculture, LAMPA

By

Heba El Sayed Mahfouz El Zorkany

B.sc. Zoology/ biotechnology Benha Univ., 2006

National Institute of Laser Enhanced Sciences Cairo University

2019

List of Abbreviations

0D	Zero-dimensional
1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
B. subtilis	Bacillus subtilis
Cd-QD	Cadmium based QD
CdSe	Cadmium selenide
CdSe/ZnS	Cadmium selenide/ Zinc sulfide
	core/shell
CdSe/ZnS-SiO ₂ QDs	Silica coated CdSe/ZnS
CLSM	Confocal laser scanning
	microscopy
Chlamydomonas reinhardtii	C. Reinhardtii
DLS	Dynamic light scattering
EDX	Energy dispersed X-ray
eV	Electron Volt
FBS	Fetal bovine serum
FRET	Förster resonance energy transfer
GQDs	Graphene quantum dots
GO	Graphene oxide
G-SiO ₂	Silica coated Graphene Quantum
	Dots
HepG2	Liver hepatocellular carcinoma
HRTEM	High-resolution TEM
LaB6	Lanthanum hexaboride
LMPA	Low melting agar
NPs	Nanoparticles
NIR	Near infra-red
NMA	
nm	Nanometer
OD	Optical density
OD ₄₅₀	Optical density at 450 nm
OD ₇₃₀	Optical density at 730 nm
PDI	Polydispersity index
PL	Photoluminescence
QDs	Quantum dots

QY	Quantum yield
meV	Milli electron Volts
NCs	Nanocrystals
TEM	Transmission electron
	microscope
THF	Tetrahydrofurane
XRD	X-ray diffraction
SCG	Single cell gel assay
SE	Standard error
SiO ₂	Silicon oxide
SPT	Single particle tracking
ТОР	Tri-n-octylphosphine
ТОРО	Tri-n-octylphosphine oxide
ZnS	Zinc sulfide

List of Table:

Table. 1: Preparation conditions of the CdSe/ZnS-SiO2 NPS used in the present study. 53
Table. 2: Summary of particles diameter by nanometers (d.nm) as generated
from DLS and TEM
Table.3: Comparison between graphene based quantum dots (G-SiO ₂ NPs)
and cadmium based quantum dots (CdSe/ZnS-SiO ₂ NPs)162

List of Figure:

Fig.1.1. A schematic illustrates the quantum confinement effect on the electron densi	ty of the
states. Adapted from (Bera et al., 2010)	6
Fig.1.2. Semiconductor band structure, adapted from (Bansil, Lin and Das, 2016)	8
Fig. 1.3. Schematic diagram of the band structure of CdSe.	11
Fig. 1. 4. Schematic of ZnS coating as a higher band gap barrier/ surface passivate. M	I odified
from (Nizamoglu and Demir, 2008).	17
Fig. 1.5. Synthetic scheme of GQDs	25
Fig. 1.6. Coatings were used in surface modification of QDs	27
Fig. 2. 1. Hemacytometer. Schematic representation of hemacytometer	44
Fig. 2.2. Synthesis of CdSe TOPO-HDA Capped QDs.	
Fig. 2.3. Synthesis of CdSe/ ZnS QDs.	50
Fig. 2.4. Schematic representation of GQDs formation from glucose pyrolysis	52
Fig. 3.1: The absorption spectra of the CdSe nanocrystals.	73
Fig. 3.2: The PL spectra of the CdSe NCs.	75
Fig. 3.3. The PL spectra of the CdSe-TOPO and CdSe-HDA nanocrystals.	77
Fig. 3.4. The chemical structure of HDA and TOPO.	77
Fig. 3.5. XRD pattern for the CdSe NCs, showing the corresponding miller ind	lices of
diffraction planes.	79
Fig. 3.6. TEM images and EDX analysis for CdSe NCs	82
Fig 3.7. DLS and ζ-potential of CdSe NCs	84
Fig 3.8. UV-Vis spectra of CdSe/ZnS NCs relative to CdSe NCs	86
Fig 3.9. PL spectra of CdSe/ZnS NCs relative with different shell growth time	88
Fig 3.10. Photoluminescence (PL) spectra of CdSe/ZnS NCs relative to CdSe NCs:	
Fig. 3.11. XRD pattern for the CdSe/ZnS NCs	91
Fig. 3.12. TEM images and EDX analysis for CdSe/ZnS NCs	
Fig 3.13. DLS and ζ-potential of CdSe/ZnS NCs.	
Fig. 3.14. The UV-VIS absorption spectra of CdSe/ZnS-SiO ₂	
Fig. 3.15. The PL spectra of CdSe/ZnS-SiO ₂ core/shell-coated NPs	
Fig. 3.16. PL-stability of CdSe-ZnS-SiO ₂ NPs versus A) time up to 90 days, B) NIR las	ser101
Fig. 3.17. PL-stability of CdSe-ZnS-SiO ₂ QDs versus thermal stress	102
Fig. 3.18. ARD pattern for the CaSe/ZnS-SiO ₂ NCS	104
Fig. 3.19. Summary snowing the XRD of the prepared samples	105
in water insets represent the HRTEM showing CdSe/ZnS-SiO-NPs C O Si Cu Cd Se Zn and	s 108
Fig 3.21 (-potential of CdSe/ZnS-SiO ₂ NPs1 by millivolt (mV)	112
Fig 3.22. A) Emission profile of CdSe/ZnS-SiO ₂ NPs generated from lambda scan fi	rom 433
to 691 nm. B) Images of CdSe/ZnS-SiO ₂ NPs acquired by lambda scan mode	114
Fig 3.23. Cytotoxicity evaluation of CdSe/ZnS-SiO ₂ NPs on Hen-G2 cell lines by	WST-1
assav.	
Fig 3.24. DNA damage evaluation of CdSe/ZnS-SiO ₂ NPs on Hep-G2 cell lines by C	omet
assav	119
Fig 3.25. Representative photo for DNA damage inductions by different doses of Cd	Se/ZnS-
SiO ₂ NPs compared with undamaged DNA.	.120
Fig 3.26. CLSM imaging of HepG2 cells. (A) Cells stained with CdSe/ZnS-SiO ₂	NP1. B)
Cells stained with CdSe/ZnS-SiO ₂ NP2, CdSe/ZnS-SiO ₂ NP3	
Fig. 3.27: CLSM imaging of HenG2 cells stained with CdSe/ZnS-SiO ₂	124
1. 5. Clark magning of hep of consistanted with Cuberzhis 5102	I 🚄 T

Fig 3.28. Confocal Laser Scanning microscopy images of live HepG2 cell. HepG	2 cell
line incubated with CdSe/ZnS-SiO ₂ NPs3 was acquired by time lapse mode for 8 hours.	125
Fig 3.29. CLSM imaging of B. subtilis Cells stained with CdSe/ZnS-SiO ₂ NPs3	128
Fig. 4.1. The absorption spectra of the GQDs.	133
Fig. 4. 2. PL spectrum for the as-prepared GQDs in Milli Q water	135
Fig. 4.3. XRD pattern for the GQDs, showing the corresponding miller indices of diffe	raction
planes	136
Fig. 4.4. TEM images for GQDs	138
Fig. 4.5. DLS and Zeta potential of GQDs: A) the size distribution of GQDs obtaine	d from
DLS analysis. B) Zeta potential of GQDs.	140
Fig. 4.6: The absorption spectra of the G-SiO ₂ NPs	142
Fig. 4.7. The PL spectra of G-SiO ₂ NPs in Milli Q water.	143
Fig. 4.8. Photo-stability of G-SiO ₂ NPs versus A) time up to 90 days, B) laser	145
Fig. 4.9. PL-stability of G-SiO ₂ NPs versus thermal stress.	146
Fig. 4.10. XRD pattern for the G-SiO ₂ NPs	147
Fig. 4.11. TEM images for G-SiO ₂	148
Fig. 4.12. DLS and Zeta potential of G-SiO ₂ NPs	150
Fig. 4.13. A) Emission profile of G-SiO ₂ NPs generated from lambda scan	152
Fig 4.14. Survival of Hep-G2 cells incubated with different concentrations of A) G-SiG	D ₂ NPs,
and B) GQDs as assessed by WST-1 assay.	154
Fig 4.15. Cytotoxicity evaluation of G-SiO ₂ NPs on Hep-G2 cell lines represent tail leng	gth,and
% DNA in tail as resulted from Comet assay	156
Fig 4.16. Cytotoxicity evaluation of Representative photo for DNA damage induction	ons by
different doses of G-SiO ₂ NPs compared with undamaged DNA	157
Fig 4.17. Confocal Laser Scanning microscopy images of HepG2 cell. HepG2 ce	ell line
incubated with G-SiO2 NPs was acquired by 40x lens.	159

Contents

Abstract	viii
List of Abbreviations	X
List of Tables	xii
List of Figures	xiii
Contents	XV

Chapter I:

1. Introduction to Quantum Dots (QDs)			1
	1.1.	What are QDs?	1
	1.2.	Quantum confinement effect	3
	1.3.	Optical properties of QDs	7
	1.4.	CdSe QDs	
	1.4.1.	Preparation methods of CdSe QDs	
	1.4.2.	Photoluminescence (PL) process in CdSe QDs	15
	1.5.	Graphene Quantum Dots	
	1.5.1.	Synthesis of Graphene Quantum Dots	
	1.5.1.1.	Top-Down Methods	19
	1.5.1.2.	Bottom-up Methods	21
	1.5.2.	Photoluminescence (PL) mechanism in GQDs	
	1.6.	Surface modification and functionalization of QDs	23
	1.6.1.	Attaching biomolecules	25
	1.6.2.	Ligand exchange	26
	1.6.3.	Silica coating	27
	1.7.	Semiconductor nanocrystals applications	27
	1.8.	QDs utilization in bioimaging	
	1.9.	Fluorescent dyes versus QDs	
	1.10.	The present issues regarding the biomarker	
	1.11.	Detailed aims and objectives	
Cl	napter II:		
	Chemicals a	and Methods	35
2.1	. Chem	nicals and supplies	
2.2	2. Chara	acterization Techniques	
	2.2.1.	Spectroscopy analysis	
	2.2.2.	Transmission electron microscope analysis	
	2.2.3.	Dynamic light scattering, and Zeta potential	
	2.2.4.	X-ray diffraction analysis (XRD)	
2.3	B. Cell c	cultures	40
	2.3.1.	Human cell culture	40
	2.3.1.1.	Cell maintenance	40
	2.3.1.2.	Cell Trypsinization and Propagation	

2.

	2.3.1.3.	Cryopreservation	41
	2.3.1.4.	Cell thawing	42
	2.3.1.5.	Counting	43
	2.3.2.	Bacterial cell culture	45
	2.3.3.	Green microalgae cell culture	45
2.4	. Synth	esis of Quantum Dots (QDs)	46
	2.4.1.	Synthesis of Graphene QDs	46
	2.4.2.	Synthesis of CdSe-TOPO NCs	47
	2.4.3.	Formation of ZnS shell on CdSe QDs	51
	2.4.4.	Silica coating of QDs by Reverse Microemulsion Method	
2.5	. Photo	stability experiment	54
2.6	. Deteri	mination of total Cd concentration	54
2.7	. Biolog	gical evaluation	56
	2.7.1.	Mitochondrial activity	56
	2.7.2.	Single Cell Gel (SCG) Assay	57
	2.7.2.1.	Preparation of Reagents	57
	2.7.2.2.	Preparation of Slides for the Single Cell Gel Assay	59
	2.7.2.3.	Collecting the cells:	61
	2.7.2.4.	Electrophoresis of Microgel Slides	62
	2.7.2.5.	Evaluation of DNA Damage	64
2.8	. Confo	cal Laser Scanning Microscopy (CLSM)	65
	2.8.1.	CLSM lambda stacks mode	65
	2.8.2.	Live cell imaging by CLSM	66
	2.8.3.	Cellular uptake and localization of CdSe/ZnS-SiO2 QDs by CLSM	66
	2.8.4.	Visualizing Bacillus Subtilis Bacteria Stained with QDs by CLSM	67
	2.8.5.	Visualizing C. reinhardtii Algae Stained with QDs by CLSM	68
2.9	. Sta	atistical analysis	69
Ch	apter III:		
3.C	dSe nanocrys	stals (NCs) characterization and toxicity results and discussion	70
	3.1Character	rizations of CdSe NCs	71
	3.1.1 UV	V-Vis Absorption of CdSe NCs:	71
	3.1.2 PL	of CdSe NCs Capped with TOPO:	74
	3.1.3 X	Ray Diffraction Analysis of CdSe NCs:	78
	3.1.4 Tr	ansmission Electron Microscopy of CdSe NCs:	80
	3.1.5 DI	S and Zeta Potential of CdSe NCs:	
	3.2Character	rizations of CdSe/ZnS NCs	
	3.2.1 UV	V-Vis Absorption of CdSe/ZnS NCs:	85
	3.2.2 Ph	otoluminescence of CdSe/ZnS NCs:	
	3.2.3 XI	RD analysis of CdSe/ZnS NCs:	90
	3.2.4 TE	EM of CdSe/ZnS NCs	92
	3.2.5 DI	S and Zeta Potential of CdSe/ZnS NCs	93

3.3 Characterizations of CdSe/ZnS-SiO2 NPs95	
3.3.1 UV-Vis Absorption of CdSe/ZnS-SiO ₂ NPs3:97	
3.3.2 PL of CdSe/ZnS-SiO ₂ NPs3:98	
3.3.3 XRD analysis of CdSe/ZnS-SiO ₂ NPs3103	
3.3.4 TEM and EDX of CdSe/ZnS-SiO2 NPs105	
3.3.5 DLS and Zeta Potential of CdSe/ZnS-SiO2 NPs109	
3.3.6 CLSM Lambda scan mode for CdSe-ZnS-SiO ₂ NPs113	
3.4 BIOLOGICAL STUDY115	
3.4.1 Mitochondrial Activity115	
3.4.2 Alkaline Comet Assay	
3.4.3 Confocal Laser Scanning Microscopy (CLSM)	
3.4.4 Live cell imaging using CdSe/ZnS-SiO ₂ QDs by CLSM	
3.4.5 CdSe/ZnS-SiO ₂ NPs uptake inside bacterial and algal cells	
3.5 CONCLUSION	
Chapter IV:	

31
32
32
34
36
37
;9
11
11
12
13
16
17
19
51
53
53
54
57
50
53
54
57

Abstract

Quantum dots (QDs) are zero-dimensional systems wherein charge carriers (i.e., electrons and holes) are confined in all three dimensions. QDs are a very interesting nanomaterial with unique characteristics, which could help in many clinical and pharmaceutical purposes.

In this study, we aimed to investigate the efficiency of silica-coated CdSe/ZnS (CdSe/ZnS-SiO₂ NCs) and Graphene nanocrystals (GQDs) for imaging purposes. CdSe quantum dots (QDs) were synthesized by organometallic routes and were coated with ZnS shell by injecting solutions of diethylzinc (Zn (Et) 2) and hexamethyldislathiane ((TMS)₂ S) as precursors for zinc and sulfur ions respectively. On the other hand, GQDs were synthesized via glucose pyrolysis. Then, the prepared NCs overcoated with silica using tetraethyl orthosilicate (TEOS) as a silica precursor. QDs were characterized by UV-Vis absorption, emission spectroscopy TEM. XRD. and DLS. The biocompatibility of silica-coated QDs was tested by evaluating mitochondrial activity and alkaline comet assay of liver hepatocellular carcinoma (HepG2) cells exposed to different concentrations of QDs. The intracellular uptake and localization of QDs in HepG2 cells, Bacillus subtilis (B. subtilis) and Chlamydomonas reinhardtii (C. reinhardtii) were monitored by Confocal fluorescence imaging using Laser Scanning Microscopy (CLSM) up to eight hours. Results showed that silica coating yielded final particles' size around 30 nm possessing strong luminescence property. The cytotoxicity test results showed that CdSe/ZnS-SiO₂ were nontoxic at low concentrations. CLSM showed that HepG2 cells depicted fast internalization of CdSe/ZnS-SiO₂ into human, bacterial and algal cells. While GQDs showed higher biocompatibility and good ability to internalization inside human cells however it showed internalization inside neither bacteria nor algae.