

Kafrelsheikh University Faculty of Agriculture Agronomy Department

EVALUATION OF SOME SELECTION PROCEDUERS UNDER DROUGHT STREES FOR IMPROVEMENT OF YIELD AND EARLINESS IN EGYPTIAN COTTON

BY

Ahmed Ismail Ali Saadallah El-Shamy

B.Sc. Fac. Agric., Agronomy, Azhar Univ., 2001 M.Sc. Agronomy, Fac. Agric., Kafrelsheikh Univ., 2009

THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Agricultural Sciences

(Agronomy- Crop Breeding)

Department of Agronomy Faculty of Agriculture Kafr El-Shiekh University

2017

CONTENTS

	Page
1.	INTRODUCTION1
2.	REVIEW OF LITERATURE
	2.1. Heritability, phenotypic and genotypic variances
	2.2. Phenotypic and genotypic coefficients of variation
	2.3. Phenotypic and genotypic correlation coefficients
	2.4. Basis for selection indices
	2.4.1. Estimates of variance and covariance
	components
	2.4.2. Estimates of coefficients of phenotypic weights
	(b's)
	2.5. Genetic advances from different selection procedures 24
	2.5.1. Selection index and phenotypic trait selection 24
	2.5.2. Phenotypic trait selection (Pedigree selection) 29
	2.6. Water deficit
3.	MATERIALS AND METHODS
	3.1. Selection procedures
	3.1.1.Selection procedures experiments
	Genetic materials
	3.1.2 Breeding procedures and management of
	populations
	3.1.3. Statistical and genetic analyses;
	3.1.3.1. Estimates of phenotypic and genotypic
	variances and covariances for F ₃ and F ₄
	generations:
	3.1.3.2. Derivation of the optimum weighting
	coefficients (b's):
	3.1.3.3. The relative importance or economic
	values (a _i) 56
	3.1.3.4. Calculation of selection indices
	3.1.3.5. Calculation of genetic advances

		Page	
	3.1.3.6. The phenotypic and genotypic		
	coefficients of variation were estimated,	50	
	using the formula	. 39	
	3.1.3.7. Phenotypic and genotypic correlation	50	
	coefficients	. 39	
	3.2. Water deficit and drought susceptibility index(DSI)	. 6I	
	3.2.1. The studied characters	.61	
	3.2.2. Statistical analysis	.63	
4.	RESULTS AND DISCUSSION	64	
	4.1. Selection procedure technique	64	
	4.1.1. Means, variance components, heritability,		
	phenotypic and genotypic coefficients of		
	variability	64	
	4.1.2. The phenotypic weights (b ^s)	.74	
	4.1.3. Phenotypic and genotypic correlations		
	coefficient	77	
	4.1.4. Predicted and actual genetic advance in		
	selected characters	82	
	4.1.5. Estimates of improvement in number of		
	bolls/plant, seeds/boll and lint /seed in F_3 and		
	F ₄ generations	88	
	4.1.6. Improvement in unselected characters	94	
	4.2. Study of the effect of water deficit in some genotypes		
	of Egyptian cotton:	101	
	4.2.1. The means performances	101	
	4.2.2. Analysis of variance and estimation of		
	parameters1	108	
	4.2.3. Phenotypic correlation	18	
	4.2.4. Application of three drought sensitive indices		
	to measurement of tolerant genotypes to water		
	stress deficit:1	122	
5.	SUMMARY AND CONCLUSION 1	129	
6.	REFERENCES1	132	
ARABIC SUMMARY			

TABLES

		Page
Table (1):	The origin and the main characters of the parents	40
Table (2):	Fifteen Selection procedures	41
Table (3):	Analysis of variance for populations I and II in F_3 generation.	45
Table (4):	Analysis of variance for populations I and II in F ₄ generation.	45
Table (5):	Ranks of the superior fifteen selected plants for fifteen selection procedures in F_2 generation from population I (G.75 x Sea Island * G.89 x Pima S ₆)	48-50
Table (6):	Ranks of the superior three selected families for fifteen selection procedures in F_3 generation from population I (G.75 x Sea Island * G.89 x Pima S_6)	51
Table (7):	Ranks of the superior twelve selected plants for fifteen selection procedures in F_2 generation from population II (C.B.58 X Uzbekistan).	52-54
Table (8):	Ranks of the superior three selected families for fifteen selection procedures in F_3 generation from population II (C.B.58 X Uzbekistan)	55
Table (9):	Combined analysis of variance of the three irrigation intervals and the expectation of mean squares	63
Table (10):	Means, range, phenotypic(VP) and genotypic(VG) variances, heritability values in broad-sense phenotypic (PCV) and genotypic (GCV) coefficients of variation, for all generations in population I for all studied traits	66
Table (11):	Means, range, phenotypic(VP) and genotypic(VG) variances, heritability values in broad-sense phenotypic (PCV) and genotypic (GCV) coefficients of variation, for all generations in population II.for all studied traits.	70-71
Table (12):	Phenotypic weights (b's) for various selection indices constructed for F_2 , F_3 and F_4 data of the two populations	75

Table (13):	The phenotypic (rp) and genotypic (rg) correlations coefficients among all studied characters in F_2 generation for population I (above) and F_2 generation for population II (below), respectively	78
Table (14):	The phenotypic and genotypic correlation coefficients among studied characters in F_3 (above) and F_4 (below) generations population I	79
Table (15):	The phenotypic and genotypic correlation coefficients among studied characters in F_3 (above) and F_4 (below) generations population II.	81
Table (16):	Predicted and actual genetic advances of lint yield (X_w) /plant and selection advances (S.A. %) from F ₂ , F ₃ and F ₄ generations for different selection procedures in population I (G.75 x Sea Island * G.89 x Pima S6)	83
Table (17):	Predicted and actual genetic advances of lint yield (X_w) /plant and selection advances (S.A. %) from F ₂ , F ₃ and F4 generations for different selection procedures in population II (C.B-58 x Uzbekistan)	84
Table (18):	Predicted genetic advances for lint yield (X_w) /plant and selection advances (S.A. %) from F ₄ generations for different selection procedures in two populations I(G.75 x Sea Island * G.89 x Pima S6) and II (C.B-58 x Uzbekistan)	87
Table (19):	Actual genetic advances of number of bolls/plant, number of seeds/boll and lint/seed from F_3 and F_4 generations for different selection procedures in population (G.75 x Sea Island * G.89 x Pima S6)	89
Table (20):	Actual genetic advances of number of bolls/plant, number of seeds/boll and lint/seed from F_3 and F_4 generations for different selection procedures in population II (C.B-58 x Uzbekistan)	90
Table (21):	Estimation actual advance in four unselected characters in F_3 and F_4 generations of population I	92
Table (22):	Estimation actual advance in four unselected characters in F_3 and F_4 generations of population II	93

Page

Table (23):	Predicted and actual advances in unselected characters in population I.	96
Table (24):	Predicted and actual advances in unselected characters in population II.	97
Table (25):	The best genotypes in F_4 generation in most studied characters from population (G.75 x Sea Island * G.89 x Pima S6)	99
Table (26):	The best genotypes in F_4 generation in most studied characters from population II(C.B-58 *Uzpkistan)	100
Table (27):	The mean performance for 21 genotypes (nineteen families and two parents) and commercial varieties from population I (G.75* Sea Island x G.89*) Pima S6 under three intervals of irrigation and their combined for all the studied characters.	102
Table (28):	The mean performance for 24 genotypes from population II (Uzbekistan * CB 58) under three intervals of irrigation and their combined for all the studied characters.	105
Table (29):	The mean squares for genotypic, error and replicates, phenotypic, genotypic variances, heritability estimates in broad sense, genotypic and phenotypic coefficients of variation, ranges and less significant differences at 0.05 and 0.01 levels of probability in three intervals of water of population I.	109
Table (30):	The mean squares for genotypic, error and replicates, phenotypic, genotypic variances, heritability estimates, in broadsense, genotypic and phenotypic coefficients of variation, ranges and less significant differences at 0.05 and 0.01 levels of probability in three intervals of water of population II.	113
Table (31):	Phenotypic correlation among all studied characters under three irrigation intervals in population I for F_4 generation.	120
Table (32):	Phenotypic correlation among all studied characters under three irrigation intervals in population II for F_4 generation	121

Table (33):	The drought stress intensity (DI), geometric means (G.M.) and susceptibility stress index in population I	123
Table (34):	The drought stress intensity (D.I.), geometric means (G.M.) and susceptibility stress index (D.S.I.) in	
	population II	125
Table (35):	Water applied by levels, seed cotton yield kg/f., water applied by m^3/f . and efficiency water used	126

Page

LIST OF FIGURES

- Figure (1) Normal natural curve for distribution for the four selected traits; lint cotton yield/plant, number of bolls/plant, number of seeds/boll and lint/seed in F₂ generation for population I before applied selection....... 68
- Figure (3) Normal natural curve for distribution for the four selected traits; lint cotton yield/plant, number of bolls/plant, number of seeds/boll and lint/seed in F₂ generation for population II before applied selection...... 72

SUMMARY AND CONCLUSIONS

The present study was concluded in the Agronomy Department, Faculty of Agriculture, Kafr El-Sheikh University, Egypt. The investigation was carried out at Sakha Experimental Farm, Sakha Agricultural Research Station, Agricultural Research Center, Egypt, during 2014, 2015 and 2016 growing seasons. Gains from selection are very important in cotton breeding program, thus, the main objectives of the study were 1. improvement in economic characters, as seed cotton yield/plant, lint cotton yield/plant, number of bolls/plant, number of seeds/boll, seed index, lint percentage and fiber properties through application of selection criteria. 2. Screening all genotypes under water stress deficit to test for tolerance and chose the best genotypes to be used in breeding programs and discarded the low economic traits (sensitive genotypes). 3. Studies on some earliness characters with understanding association between earliness and yield productivity to get up a promising genotype and descriptive on wide scale for it later.

The materials used in study were population I (G.75 X Sea Island * G.89 X Pima S6) and population II (Uzbekistan * CB-58). The data showed an increase in mean performances for all characters with advanced generations from F_2 to F_4 , indicating an accumulation of favorable alleles. The advanced generations, in F_3 and F_4 , showed reductions in PCV and GCV, as compared with F_2 generation. Most characters showed high heritability values over 60 (%). Genotypic correlations, in most cases, were

higher than phenotypic ones in both F_3 and F_4 generations. The undesirable negative correlation, which existed between fiber length and strength with other yield contributed characters were broken up and converted to non-significant in F_4 generation.

genetic The maximum predicted advance for lint yield/plant, from F_3 and F_4 generations was achieved when selecting for three components, i.e. number of bolls/plant with number of seeds/boll and lint/seed, as well as for lint yield/plant, alone. Selection for lint yield/plant, alone, gave the maximum actual value in F₄ generation, followed by index involved lint yield/plant with number of bolls/plant. High discrepancy was observed between predicted and actual gains from selection for most procedures. Advance would decrease in F₄ generation, as compared with F_3 for all characters. Breeder could select some families, which are characterized by high yielding capacity with acceptable fiber properties and utilize such selected families in breeding program aiming to improvement of yield and quality in cotton.

Application of three managements; namely, W1 irrigation every sixteen days, as a control, W2 irrigation every twenty days and W3 irrigation every 32 days. The analysis of variance from randomized complete block design and a combined analysis, had shown the high significant genotypes for all studied traits in the two populations. Water stress (W) gave significant differences and genotypes x W interaction and were highly significant in the two populations. All genotypes were affected by water stress deficit and most traits were decreased, except the root length and earliness index. The genotypes under study were tested to sensitivity by three indices; i.e., drought stress intensity (DI), geometric mean (G.M.) and susceptibility stress index (SSI). Irrigation water stress played the major role in most genotypes where, seed cotton yield/plant was decreased, except for some superior genotypes from both populations. Genotype behavior, under moisture stress conditions, came out as drought tolerant and revealed stability tolerance across environments and could be exploited in breeding program, aiming to improve water stress tolerance.