

Application of Modern Chemical Methods for Detection of Deterioration and Pollution in Foods

A Thesis Presented by

Amira Atef Abdullah Mahmoud

B. Sc. Chemistry Faculty of Science, Zagazig University M.Sc. Analytical Chemistry, Faculty of Science, Zagazig University

In Partial Fulfillment for the Degree of Ph.D. of Science (Analytical Chemistry)

Submitted to

Chemistry Department Faculty of Science Zagazig University

2020

Abstract

A new, green, and simple preconcentration and microextraction methods for preconcentration of trace amount of aluminum (Al(III)), cadmium (Cd(II)) and amaranth dye prior to its determination by spectrophotometry or flame atomic absorption spectroscopy. The first method is based on the complexation reaction of Al(III) with alizarin red S (ARS) at pH 5.0 and micelle-mediated extraction of the complex with nonionic surfactant Triton X-114. The enriched analyte in the surfactant-rich phase was determined spectrophotometrically at 515 nm. The proposed CPE method showed linear calibration within the range 5.0-300 ng mL^{-1} of Al(III) and the limit of detection was 1.0 ng mL^{-1} with a preconcentration factor of ~100. The relative standard deviation (RSD%) and relative error (RE%) were found to be 1.70% and 1.78%, respectively. The method was applied to the determination of Al(III) in real food samples with a recovery for the spiked samples in the range of 95.0-102%. The technique is vortex-assisted ionic liquid-based dispersive second liquid-liquid microextraction technique (VA-IL-DLLME) was developed to preconcentrate and determine trace quantities of Cd(II) ions from real food samples, prior to detection by FAAS. The proposed VA-IL-DLLME method is base on utilization of ionic liquid (IL) (1-hexyl-3methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][FAP]) as an extraction solvent for Cd(II) ions after the complexation with 2-(2'-benzothiazolylazo) chromotropic acid (BTANC) at pH 8.0. In the range of 1.0–300 μ g L⁻¹, the calibration graph was linear. Limit of detection, preconcentration factor and the relative standard deviation (RSD %, 25, 150 and 250 μ g L⁻¹, n=5) were 0.2 μ g L⁻¹, 100 and 2.0-3.2%, respectively. The third method is ultrasound-assisted ionic liquid-based dispersive liquid-phase microextraction technique (UA-IL-DLPME) was successfully developed to preconcentrate and determine trace quantities of amaranth dye in food samples. This method based on utilization of ionic liquid (IL) (1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][FAP]) as an extraction solvent for amaranth from 50 mL sample solution, with the aid of sonication. In the range of 10–800 μ g L⁻¹, the calibration graph was linear. Detection limit, and preconcentration factor were 3.0 μ g L⁻¹ and 100, respectively. The relative standard deviations (RSD %) for 100 and 700 μ g L⁻¹ of amaranth were 3.0 and 2.3% (n=5), respectively. The impact of different analytical parameters on microextraction efficiency was investigated. The validation of the proposed methods was verified by test of certified reference materials applying the standard addition method.

Contents

Title	Page	
ChapterI. Introduction		
I.1.Generalintroduction	1	
I.2. Extraction techniques	3	
I.2.1. Cloud point extraction (CPE)	5	
I.2.2. Dispersive liquid-liquid microextraction (DLLME)	10	
I.3. Spectrophotometric technique	15	
I.4. Flame atomic absorption spectrometry (FAAS)	16	
I.5. Development of analytical methods	17	
I.6.The studied metal ions	27	
I.6.1. Aluminum Al(III)	27	
I.6.2. Cadmium Cd(II)	28	
I.6.3. Amaranth dye	29	
I.7. Reagents	30	
Chapter II. Review of literature		
II.1. Literature survey on determination of the metal ions under consideration	31	
II.1.1. Determination of Aluminum (Al(III))	31	
II.1.1.1 liquid-liquid microextraction	31	
II.1.1.2.Cloud point extraction (CPE)	33	
II.1.1.3. Solid phase extraction	37	
II.1.1.4. Coprecipitation:	43	
II.1.2. Determination of Cadmium (Cd(II))	46	
II.1.2.1. Dispersive liquid-liquid microextraction (DLLME)	46	
II.1.2.2.Cloud point extraction (CPE)	56	
II.1.2.3. Solid phase extraction (SPE)	59	

II.1.3. Determination of Amaranth dye:	64	
II.1.3.1. Liquid–Liquid Microextraction (LLME)	64	
II.1.3.2.Cloud point extraction (CPE)	65	
II.1.3.3. Solid phase extraction (SPE)	66	
II.1.3.4. Electrochemical methods	67	
II.1.3.5. Spectroscopy methods	68	
II.2. Literature survey of benzothiazolylazo dyes and its applications	70	
Aim of the Work	72	
Chapter III. Materials and Methods	73	
III.1. Instruments	73	
III.2. Chemicals and reagents	74	
III.2.1. Buffer solutions	74	
III.2.2. Surfactant solutions	76	
III.2.3. Solvents	77	
III.3. Synthesis of the organic azo ligands	77	
III.3.Application of cloud point extraction for preconcentration,	70	
separation and determination of Aluminum in food samples	13	
III.3.1. Reagents and solutions	79	
III.3.2. Procedure	80	
III.3.3. Applications in real food samples	81	
III.3.3.1. Fruit juices samples	81	
III.3.3.2. Food samples	82	
III.4.A green Vortex-Assisted Ionic Liquid based Dispersive Liquid-		
Liquid Microextraction Method for Preconcentration and	83	
Determination of trace Cadmium Food Samples.		
III 4.1. Descents and solutions		
III.4.1. Reagents and solutions	83	
III.4.2. Preconcentration procedure	83 84	

III.4.3.1. Fruit juices samples	84	
III.4.3.2. Food samples		
III.5. Eco-Friendly Ultrasound-Assisted Ionic Liquid-Based Dispersive		
Liquid-Phase Microextraction for Preconcentration and Determination	86	
of Amaranth in Food Samples		
III.5.1. Chemicals and reagents	86	
III.5.2. Preconcentration procedure	86	
III.5.3. Applications in real samples	87	
Chapter IV. Results and Discussion		
IV.1. Application of cloud point extraction for preconcentration,	88	
separation and determination of aluminum in food samples	00	
IV.1.1. Optimization of the experimental conditions		
IV.1.1.1. Effect of pH	89	
IV.1.1.2. Effect of ARS concentration	90	
IV.1.1.3. Effect of nonionic surfactant (Triton X-114)concentration	91	
IV.1.1.4. Effects of equilibrium temperature and time	92	
IV.1.1.5. Effects of diluents	93	
IV.1.2. Interference studies	93	
IV.1.3. Analytical characteristics	95	
IV.1.4. Method validation and applications to real samples	97	
IV.2. A green Vortex-Assisted Ionic Liquid based Dispersive Liquid-		
Liquid Microextraction Method for Preconcentration and	100	
Determination of trace Cadmium Food Samples		
IV.2.1. Optimization of the experimental conditions	100	
IV.2.1.1. Influenceof pH	100	
IV.2.1.2. Influence of amount of BTANC	101	
IV.2.1.3. Influence of ionic liquid	102	
IV.2.1.4. Influence of dispersive solvent type and volume	103	

IV.2.1.5. Influence of sample volume	104
IV.2.1.6. Influence of vortex time	105
IV.2.1.7. Influence of centrifugation conditions	106
IV.2.2. Interference studies	106
IV.2.3. Analytical features of the proposed method	108
IV.2.4. Validation studies	109
IV.2.5. Analytical applications to real samples	112
IV.3. Eco-Friendly Ultrasound-Assisted Ionic Liquid-Based Dispersive	
Liquid-Phase Microextraction for Preconcentration and Determination	115
of Amaranth in Food Samples	
IV.3.1. Optimization of the experimental conditions	115
IV.3.1.1. Effect of pH	129
IV.3.1.2. Influence of ionic liquid type and volume	116
IV.3.1.3. Influence of dispersive solvent type and volume	117
IV.3.1.4. Influence of sample volume	118
IV.3.1.5. Influence of salt addition	119
IV.3.1.6. Influence of ultrasonication time	120
IV.3.1.7. Influence of centrifugation conditions	121
IV.3.2. Interference foreign ions	121
IV.3.3. Analytical performance of the proposed method	123
IV.3.4. Applications to real samples	123
Summary & Conclusion	125
References	129
Arabic summary	

Figure	F ' F '41-	Page
No.	Figure Title	
1	Scheme of the cloud point extraction (CPE) procedure.	6
2	Flow chart of general systematic procedural	8
	The experimental procedure steps for implementation of cloud-	9
3	point extraction/preconcentration for metal ions determination	
	for CPE in metal separation.	
4	Steps involved in a dispersive liquid-liquid microextraction procedure.	13
5	Chemical structure of amaranth	29
6	Synthesis of 2-(2'-Benzothiazolylazo) chromotropic acid (BTANC).	
	Absorption spectra of Al(III)-ARS complex without and with	88
7	CPE.Conditions: ARS, (0.1% w/v); Triton X-114, (0.2% v/v);	
	CTAB (0.2% w/v) and pH 5.0.	
	Effect of pH on the absorbance after CPE. Conditions: Al(III),	90
8	250 ng mL ⁻¹ ; ARS, (0.1% w/v); Triton X-114, (0.2% v/v) and	
0	CTAB (0.2% w/v). Other experimental conditions are	
	described under procedure.	
	Effect of volume of ARS (0.1% w/v) on the absorbance after	91
0	CPE. Conditions: Al(III), 250 ng mL ⁻¹ ; pH 5.0 and Triton X-	
9	114, (0.2% v/v). Other experimental conditions are described	
	under procedure.	
	Effect of Triton X-114 concentration on the absorbance after	92
10	CPE. Conditions: Al(III), 250 ng mL ⁻¹ ; pH 5.0; and ARS,	
	(0.1% w/v). Other experimental conditions are described under	
	procedure	

List of Figures

Figure	F ' T '41-	Page
No.	Figure Thie	
	Effect of pH on the recoveries of Cd ²⁺ -BTANC complex	100
	through VA-IL-DLLME method. Conditions: (Cd^{2+})	
11	concentration, 200 μ g/L; concentration of BTANC, 0.2%	
	(w/v); [HMIM][FAP] volume, 200 µL; vortex time, 1.0 min;	
	methanol volume, 500 μ L; sample volume, 25 mL; N = 3).	
	Influence of the concentration of BTANC on the	101
	preconcentration of Cd ²⁺ using VA-IL-DLLME method.	
12	Conditions: $(Cd^{2+}$ concentration, 200 µg/L; pH 8.0;	
	[HMIM][FAP] volume, 200 µL; vortex time, 1.0 min; ethanol	
	volume, 500 μ L; sample volume, 25 mL; N = 3).	
	Influence of the IL volume on the preconcentration of Cd^{2+}	102
	using VA-IL-DLLME method. Conditions: (Cd ²⁺	
13	concentration, 200 μ g/L; concentration of BTANC, 0.2%	
	(w/v); pH 8.0; vortex time, 1.0 min; methanol volume, 500 μ L;	
	sample volume, 25 mL; $N = 3$).	
	Influence of methanol volume on the preconcentration of Cd^{2+}	103
	using VA-IL-DLLME method. Conditions: (Cd ²⁺	
14	concentration, 200 μ g/L; concentration of BTANC, 0.2%	
	(w/v); pH 8.0; [HMIM][FAP] volume, 200 µL; vortex time, 1.0	
	min; sample volume, 25 mL; $N = 3$).	
	Influence of sample volume on the preconcentration of Cd^{2+}	104
	using VA-IL-DLLME method. Conditions: (Cd ²⁺	
15	concentration, 200 μ g/L; concentration of BTANC, 0.2%	
	(w/v); pH 8.0; [HMIM][FAP] volume, 200 µL; methanol	
	volume, 500 μ L; vortex time, 1.0 min; N = 3).	

Figure No.	Figure Title	Page
	Influence of vortex time on the preconcentration of Cd ²⁺ using	105
	VA-IL-DLLME method. Conditions: (Cd ²⁺ concentration, 200	
16	μ g/L; concentration of BTANC, 0.2% (w/v); pH 8.0;	
	[HMIM][FAP] volume, 200 μ L; methanol volume, 500 μ L;	
	sample volume, 25 mL; $N = 3$).	
	Effect of pH on the absorbance of 700 μ g/L amaranth after	116
	UA-IL-DLLME method. Conditions: ([HMIM] [FAP] volume,	
17	200 μ L; dichloromethane volume, 800 μ L; sonication time, 2.0	
	min; centrifugation time and rate 5.0 min and 4000 rpm;	
	sample volume, 50 mL; $N = 3$).	
	Influence of the [HMIM] [FAP] volume on the absorbance of	117
	700 μ g/L amaranth after UA-IL-DLLME method. Conditions:	
18	(pH 4.5; dichloromethane volume, 800 μ L; sonication time, 2.0	
	min; centrifugation time and rate 5.0 min and 4000 rpm;	
	sample volume, 50 mL; $N = 3$)	
	Influence of dichloromethane volume on the absorbance of 700	118
	μ g/L amaranth after UA-IL-DLLME method. Conditions: (pH	
19	4.5; [HMIM] [FAP] volume, 200 μ L; sonication time, 2.0 min;	
	centrifugation time and rate 5.0 min and 4000 rpm; sample	
	volume, 50 mL; N = 3).	
	Influence of sample volume on the absorbance of 700 $\mu\text{g/L}$	119
20	amaranth after UA-IL-DLLME method. Conditions: (pH 4.5;	
	[HMIM] [FAP] volume, 200 µL; dichloromethane volume, 800	
	μ L; sonication time, 2.0 min; centrifugation time and rate 5.0	
	min and 4000 rpm; N = 3).	

Figure No.	Figure Title	Page
21	Influence of NaCl concentration on the absorbance of 700 μ g/L	120
	amaranth after UA-IL-DLLME method. Conditions: (pH 4.5;	
	[HMIM] [FAP] volume, 200 µL; dichloromethane volume, 800	
	μ L; sample volume, 50 mL; sonication time, 2.0 min;	
	centrifugation time and rate 5.0 min and 4000 rpm; $N = 3$).	

List of Tables

Table	Table Title	Daga
No.	Table The	rage
1	Comparison between the proposed CPE procedure and other	15
1	reported methods for Al(III) extraction and determination.	43
	Comparison between the proposed VA-IL-DLLME	
2	procedure and other reported extraction methods for Cd(II)	63
	determination in various samples.	
2	Effect of interferent ions on preconcentration and recoveries	04
3	of 250 ng mL ⁻¹ Al(III) (N=3.0)	94
4	Optimum conditions and analytical characteristics of the	96
4	proposed method with and without CPE	
-	Determination of Al(III) in real food samples using the	00
5	proposed CPE method (n=3)	98
<i>.</i>	Determination of Al(III) in fruit juice samples using the	0.0
6	proposed CPE method (n=3)	99
7	Validation of the proposed CPE method using certified	0.0
	reference materials (N=3)	99
8	Influence of various coexisting matrix ions on the recovery	
	of Cd ²⁺ ions using the proposed VA-IL-DLLME method	107
	(N=3).	

Table	Tabla Titla	Dogo
No.		1 age
0	Analytical characteristics of the proposed VA-IL-DLLME	100
7	method coupled with FAAS	109
10	The analysis results for certified reference materials after	110
10	application of proposed VA-IL-DLLMEprocedure (N= 3.0)	110
	The reproducibility and repeatability for the replicate	
11	measurements of Cd ²⁺ in quality control samples spiked	111
	with 75, 150, and 225 μ g/L (N= 3)	
	The results for the addition-recovery tests for Cd ²⁺ ion in	
12	food samples using the proposed VA-IL-DLLMEmethod	113
	(N=3)	
	The results for the addition-recovery tests for Cd ²⁺ ion in	
13	fruit juice samples using the proposed VA-IL-	114
	DLLMEmethod (N=3)	
	Influence of some foreign ions on the recovery of amaranth	
14	using the proposed UA-IL-DLLME method (N=3).	122
	The results for the addition-recovery tests for amaranth in	
15	food samples using the proposed UA-IL-DLLMEmethod	124
	(N=3).	

_

_