

EFFECT OF WATER QUALITY AND DRIP IRRIGATION MANAGEMENT ON PEPPER PRODUCTIVITY

By

FAWZYA AYMAN NAGM AL DEEN ALI

B. Sc. (Agric. Eng.) Faculty of Agric., Benha University, (2013)

A THESIS

Submitted in Partial Fulfillment of The Requirements

For

MASTER SCIENCE Degree

IN

AGRICULTURAL SCIENCES

(AGRICULTURAL ENGINEERING)

AGRICULTURAL AND BIO-SYSTEMS ENGINEERING DEPARTMENT FACULTY OF AGRICULTURE, MOSHTOHOR BENHA UNIVERSITY, Egypt

2019

ABSTRACT

Availability of fresh surface water for irrigation is declining in Egypt, and saline ground-water is increasingly used for irrigation. Therefore, the aim of this study was to investigate the effect of using different water salinity levels on soil salt distribution and sweet pepper at various growth stages, also to evaluate the possibilities of applying the needed Leaching Requirements to decrease the harmful effect of high salinity levels on soil and pepper productivity. A greenhouse experiment was carried out on a sandy soil at Dokki protected cultivation experimental site, Agriculture Research Center (ARC), Ministry of Agriculture and Land Reclamation (latitude 30° 02` 46.1" N, 31° 12' 16.6' E longitudes, and 27m altitude), during the summer and winter seasons of 2017-2018, to evaluate the effect of water quality and drip irrigation management on sweet pepper (*Capsicum annuum* L. cv. Top star) plants under surface drip irrigation. The experiment consists of three treatments of EC and three water salinity treatments of leaching requirement. The EC treatments were 0.4control, 3 and 5 dS/m, leaching requirement was applied after 2 months from transplanting when ECe become more than ECiw for all treatments, LR treatments was 10% for control Sc, LR 21.4% for S3dSlm and LR 37.5% for S_{5dSlm}. Results revealed that irrigation with different salinity levels and Leaching requirement both affected the plant vegetative growth, peppers productivity, yield parameters and irrigation water productivity. As well as, the more salts accumulated in the root zone could lead to higher potential yield losses of sensitive and moderately sensitive crops, such as sweet peppers. It can be concluded that the higher the salinity in the irrigation water the less the height, the single leaf area, the roots fresh weight, the roots height, and the number of fruits per plant. As well as, the higher the salinity in the irrigation water the more concentration of Na, Cl and proline in fruits. Data revealed that higher salinity levels of irrigation water decreased the TSS content of sweet pepper fruit, which expresses sugar concentration in pepper. Increasing salinity affected fruits color. The peppers yield (2.892 Kg/m²) and Irrigation water Productivity (1.04 Kg/m³ water) was high in S_cLR. The peppers yield in $S_{3dS/m}$ and $S_{5dS/m}$ treatments were reduce by 46.0% and 78.2%, respectively, comparing with the control treatment.

Keywords: Salt tolerance, Capsicum annum L, Leaching requirement, Water Productivity, Fruit Quality.

LIST OF CONTENTS

Subjects

1.

Page

1.	INT	FRODUCTION
2.	REV	VIEW OF LITRATURE
	2.1.	Water quality
		2.1.1. Definition and methods of measurement
		2.1.2. Classification of water quality
		2.1.3. Reasons for using low quality water for irrigation
		2.1.4. Water quality problems
	2.2.	Drip irrigation system
		2.2.1. Identify drip irrigation
		2.2.2. Drippers evaluation
		2.2.3. Advantages and disadvantages of drip irrigation under saline conditions
	2.3.	Salinity
		2.3.1. Definition and measurement of salinity
		2.3.2. The motives behind use saline water irrigation
		2.3.3. Crop response to salinity

		2.3.4. Problems behind using saline irrigation water
		2.3.5. Effect of Salinity on different growth stage
		2.3.6. Effect of salinity on vegetative growth
		2.3.7. Effect of salinity on yield
		2.3.8. Salt accumulation in soil
	2.4.	Irrigation management
	2.5. S	Salinity control (Leaching Requirement)
	2.6. P	Pepper Plant
	2.7. V	Vater Productivity
3.	MAT	ERIAL AND METHODS
	3.1: F	Evaluation of drip irrigation system
	3	1.1: Laboratory evaluation
	3	.1.2. Field evaluation
	3.2. E	Experimental site
	3.3. E	Experimental preparation for sand and containers
	3.4. S	oil properties and irrigation water analysis
	3	.4.1. Chemical properties of the soil
	3	.4.2. Irrigation water preparation and analysis
	3.5. T	Freatments and experimental design

3.6. Field experiment procedures	54
3.6.1. Climatic data	54
3.6.2. Irrigation	56
3.6.3. Fertilization program	59
3.7. Growth and yield parameters	59
3.7.1. Vegetative measurements	59
3.7.2. Yield measurements	60
3.7.3. Physical characteristics of pepper fruits	61
3.7.4. Chemical analyze for pepper fruits	62
3.8. Salt distribution patterns	63
3.9. Water productivity	64
3.9.1. Crop Water productivity	64
3.9.2. Irrigation Water productivity	65
3.10. Statistical analysis	65
4. RESULTS AND DISSCUSSION	66
4.1. Performance of drip irrigation system	66
4.2. Irrigation requirement using weather parameters	67
4.3. Effect of irrigation water salinity levels on soil salt distribution patterns	68

	fect of irrigation with different salinity levels and LR etative growth
	4.4.1. Plant height
	4.4.2. Single leaf area
	4.4.3. Number of leaves
	4.4.4. Leaves fresh weight
	4.4.5. Stem fresh weight
	4.4.6. Root fresh weight
	4.4.7. Root length
4.5. Ef	fect of salinity levels on flowering
	fect of irrigation with different salinity levels and LR d parameters
	4.6.1. Early and total fruit number
	4.6.2. Early fruit yield
	4.6.3. Total fruit yield
	fect of irrigation with different salinity levels and LR it properties
	4.7.1. Fruit weight
	4.7.2. Fruit length
	4.7.3. Fruit diameter

4.7.4. Number of seeds inside fruits	97
4.7.5. Weight of seeds inside fruits	99
4.7.6. Chemical analysis of fruits	100
4.7.7. Physical characteristics of fruits	103
4.8. Effect of irrigation with different salinity levels and LR on irrigation water productivity	
5. SUMMARY AND CONCLUSION	108
6. REFERENCES	114
7. ARABIC SUMMARY	-

LIST OF TABLES

Table	Subjects	Page
2.1	Classification of water	7
2.2	Permissible limits for classes of irrigation water	8
2.3	Soil salinity tolerance levels for some plants (Adapted from Ayers and Westcot, 1976)	23
3.1	Hydraulic characteristic of the drip irrigation system	47
3.2	Chemical analysis of the sandy soil, used in this experiment.	48
3.3	Chemical analysis of the Rashide the experimental site	50
3.4	Chemical analysis of the irrigation water that use in the experiment	51
3.5	Element concentrations in the nutrient solution	59
4.1	Hydraulic characteristics of drippers and ASAE recommended classifications	67
4.2	Monthly Irrigation Requirement for each irrigation treatment under growing seasons	68
4.3	Effect of salinity levels and LR on days to flower	85
4.4	Effect of salinity levels and LR on Chemical properties of pepper fruits.	102
4.5	Effect of irrigation with different salinity levels on Physical properties of fruits	104

LIST OF FIGURES

Fig.	Subjects	Page
3.1	Drip irrigation test facility	43
3.2	Relationship between amount of Rashide salts and EC of water	49
3.3	Surface drip irrigation system	53
3.4	Maximum and minimum air temperature at Dokki site during season of 2017 - 2018.	55
3.5	Maximum and minimum relative humidity at Dokki site during season of 2017 – 2018.	56
3.6	Digital planimeter PLACOM KP-90N	60
3.7	Minolta model CR-300 colorimeter	62
3.8	Buchner Funnel and Suction pump	64
3.9	EC Meter	64
4.1	Flow rate Vs. pressure curve for Built-in drippers (4L/h) curve	66
4.2	Salts distribution patterns in soil root zone for control treatments Sc and ScLR	70
4.3	Salts distribution patterns in soil root zone for S _{3ds} and S _{3ds/mLR} treatments	70
4.4	Salts distribution patterns in soil root zone for S_{5ds} and $S_{5ds/mLR}$ treatments	71
4.5	Effect of salinity levels and LR on plant height	72
4.6	Effect of salinity levels and LR on Single leaf area	74
4.7	Effect salinity levels and LR on Number of leaves	76

4.0		
4.8	Effect of salinity levels and LR on fresh weight of leaves	78
4.9	Effect of salinity levels and LR on stem fresh weight	80
4.10	Effect salinity levels and LR on Root fresh weight	81
4.11	Effect of salinity levels and LR on Root length	83
4.12	Effect of salinity levels and LR on Number of fruits per plant	87
4.13	Effect of salinity levels and LR on Early fruit yield	89
4.14	Effect of salinity levels and LR on Total fruit yield	91
4.15	Effect of salinity levels and LR on average Fruit	02
	weight	93
4.16	Effect of salinity levels and LR on average Fruit	95
	length	93
4.17	Effect of salinity levels and LR on average Fruit	96
	diameter	90
4.18	Effect of salinity levels and LR on number of seeds	98
	inside fruits	70
4.19	Effect of salinity levels and LR on weight of seeds	99
	inside fruits	77
4.20	Seasonal irrigation water productivity (IWP) for	106
	the treatments	100