Benha University Faculty of Science Chemistry Department

Some Chemical Studies on Detecting Olive Oil Adulteration

A Thesis

Submitted to Benha University, Faculty of Science in Partial Fulfillment of the Requirements for the Degree of

Ph.D. in Chemistry

(Organic Chemistry)

By

Amany Nagah Ali Mostafa Farahat

B.Sc. Fac. Science., Al Azhar Univ., 2006 M.Sc. Fac. Science., Al Azhar Univ., 2014

Under Supervision of

Prof. Dr. Ashraf Abd Elhamid		Prof. Dr. Alaa Azouz Salama	
Farouk Wasfy		Professor of Food Science and	
Professor of Organic Chem	nistry	Technology	
Dean of Faculty of Science	Benha	Food Technology Research Institute	
University		Agricultural Research Center	

CONTENTS

Title	Page
List of tables	IV
List of figures	IX
List of abbriviations	XII
Introduction	1
Aim of the work	6
Review of Literature	7
-Authentication of olive oil	9
-Detection of EVOO Adulteration Using Chromatographic	11
Analyses	11
-Detection of EVOO Adulteration by Gas Chromatography	11
-Detection of EVOO Adulteration by lipase hydrolysis	19
-Detection of EVOO Adulteration by HPLC	21
-Detection of EVOO Adulteration by Spectroscopic Analyses	31
-Detection of EVOO Adulteration by UV-VIS Spectroscopy	31
-Detection of EVOO Adulteration by Fourier Transform	35
Infrared (FTIR) Spectroscopy	
-Detection of EVOO Adulteration by Nuclear Magnetic Resonance (NMR) Spectroscopy	46
-Other Methods Used in Detection of EVOO Adulteration	52
-Detection of virgin olive oil adulteration using a	52
voltammetric e-tongue	0 -
-Detection of virgin olive oil adulteration using	53
chemiluminescence	55
-Detection of virgin olive oil adulteration using excitation-	54
emission fluorescence spectroscopy	54
-Detection of virgin olive oil adulteration using non-thermal plasma	55
-Detection of virgin olive oil adulteration using Stimulated	56

Brillouin scattering in combination with visible absorption spectroscopy

Materials and Methods	58
Materials	58
-Vegetable oils	58
-Pancreatin	58
Methods of analysis:	59
-Chemical properties of oils:	59
-Acid value	59
-Peroxide value	59
-Saponification value	59
-Iodine Value	59
-Determination of K_{232} and K_{270} extinction coefficient	60
-Analysis of fatty acid composition	61
-Fatty acid methyl esters preparation.	61
-Determination of the glyceride structure	61
-Determination of the glyceride structure by lipase hydrolysis	61
-Pancreatic lipase hydrolysis	62
-Isolation of 2.monoglyceride	63
-Determination of the fatty acid composition of the 2. monoglycerides	63
-Determination of the glyceride structure using HPLC analysis	63
-Fourier Transform Infrared (FTIR) spectral analysis	67
-Nuclear Magnetic Resonance (NMR) Spectral Analysis	68
- ¹ H-NMR Spectral Analysis	68
- ¹³ C Spectral Analysis	69
Results and Discussion	70

-Physicochemical properties and fatty acids profile of pure 70

oils

-Detection of EVOO Adulteration by Gas Chromatography	
-Detection of EVOO Adulteration by lipase hydrolysis	
-Detection of EVOO Adulteration by HPLC	126
-Detection of EVOO Adulteration by Spectroscopic Analyses	158
-Detection of EVOO Adulteration by Fourier Transform Infrared (FTIR) Spectroscopy.	
-Detection of EVOO Adulteration by Nuclear Magnetic Resonance (NMR) Spectroscopy.	
1. Detection of EVOO Adulteration by ¹ H NMR spectroscopy	179
¹³ C NMR spectroscopy of olive oil triacylglycerols	
Summary	
References	
Arabic summary	

LIST OF TABLES

No.	Title	Page
1.	Chemical properties and fatty acids profile of pure	
	oils	76
2.	Physicochemical properties and fatty acids profile	77 7 0
2	of Croatina olive oil and its binary admixtures.	77-78
3.	Physicochemical properties and fatty acids profile of koroneiki olive oil and its binary admixtures	79-80
4.	The total fatty acids and the fatty acid composition	17 00
	of the 2-monoglycerides of koroneiki olive oil and	
	its binary admixtures	84
5.	The total fatty acids and the fatty acid	
	composition of the 2-monoglycerides of Croatina	05
C	olive oil and its binary admixtures.	85
6.	Component glycerides of Koroneiki olive oil.	86-87
7	Component glycerides of Koroneiki olive oil with	
	2% (w/w) corn oil.	88-89
8	Component glycerides of koroneiki olive oil with	00.01
0	5% (w/w) corn oil.	90-91
9	Component glycerides of koroneiki olive oil with 10% (w/w) corn oil.	92-93
10	Component glycerides of koroneiki olive oil with	92-93
10	2% (w/w) sunflower oil.	94-95
11	Component glycerides of Koroneiki olive oil with	
	5% (w/w) sunflower oil.	96-97
12	Component glycerides of Koroneiki olive oil with	
	10% (w/w) sunflower oil.	98-99
13	Component glycerides of Koroneiki olive oil with	100 101
1 4	2% (w/w) soybean oil.	100-101
14	Component glycerides of koroneiki olive oil with 5% (w/w) southean oil	102 102
	5% (w/w) soybean oil.	102-103

15	Component glycerides of koroneiki olive oil with 10% (w/w) soybean oil.	104-105
16.	Component glycerides of Croatina olive oil.	106-107
17.	Component glycerides of Croatina olive oil with 2% (w/w) corn oil.	108-109
18.	Component glycerides of Croatina olive oil with 5% (w/w) corn oil.	110-111
19	Component glycerides of Croatina olive oil with 10% (w/w) corn oil.	112-113
20	Component glycerides of Croatina olive oil with 2% (w/w) Sunflower oil.	114-115
21	Component glycerides of Croatina olive oil with 5% (w/w) Sunflower oil.	116-117
22	Component glycerides of Croatina olive oil with 10% (w/w) Sunflower oil.	118-119
23	Component glycerides of Croatina olive oil with 2% (w/w) Soybean oil.	120-121
24	Component glycerides of Croatina olive oil with 5% (w/w) Soybean oil.	122-123
25	Component glycerides of Croatina olive oil with 10% (w/w) Soybean oil.	124-125
26	Triglycerides of koroneiki olive oil and its binary admixtures.	132-133
27	Triglycerides of Croatina olive oil and its binary admixtures.	124 125
28	Detection of extraneous oils in koroneiki olive oil by a comparison of mathematical algorithms with	134-135
20	a data base built from genuine olive oils.	137
29	Detection of extraneous oils in koroneiki olive oil with 2% sunflower oil by a comparison of mathematical algorithms with a data base built	
	mathematical algorithms with a data base built from genuine olive oils.	138
30	Detection of extraneous oils in koroneiki olive oil	139

	with 5% sunflower oil by a comparison of mathematical algorithms with a data base built from genuine olive oils.	
31	Detection of extraneous oils in koroneiki olive oil	
	with 10% sunflower oil by a comparison of	
	mathematical algorithms with a data base built	
	from genuine olive oils.	140
32	Detection of extraneous oils in koroneiki olive oil	
	with 2% soybean oil by a comparison of	
	mathematical algorithms with a data base built	1 4 1
22	from genuine olive oils.	141
33	Detection of extraneous oils in koroneiki olive oil	
	with 5% soybean oil by a comparison of mathematical algorithms with a data base built	
	mathematical algorithms with a data base built from genuine olive oils.	142
34	Detection of extraneous oils in koroneiki olive oil	174
51	with 10% soybean oil by a comparison of	
	mathematical algorithms with a data base built	
	from genuine olive oils.	143
35	Detection of extraneous oils in koroneiki olive oil	
	with 2% corn oil by a comparison of mathematical	
	algorithms with a data base built from genuine	
	olive oils.	144
36	Detection of extraneous oils in koroneiki olive oil	
	with 5% corn oil by a comparison of mathematical	
	algorithms with a data base built from genuine	
~-	olive oils.	145
37	Detection of extraneous oils in koroneiki olive oil	
	with 10% corn oil by a comparison of	
	mathematical algorithms with a data base built	140
20	from genuine olive oils.	146
38	Detection of extraneous oils in Croatina olive oil	
	by a comparison of mathematical algorithms with a data base built from genuine olive oils.	147
39	Detection of extraneous oils in Croatina olive oil	14/
57	with 2% sunflower oil by a comparison of	148
	the 270 summer on of a companion of	110

	mathematical algorithms with a data base built	
40	from genuine olive oils. Detection of extraneous oils in Croatina olive oil	
	with 5% sunflower oil by a comparison of mathematical algorithms with a data base built	
	from genuine olive oils.	149
41	Detection of extraneous oils in Croatina olive oil with 10% sunflower oil a comparison of	
	mathematical algorithms with a data base built	
	from genuine olive oils.	150
42	Detection of extraneous oils in Croatina olive oil with 2% soybean oil by a comparison of	
	mathematical algorithms with a data base built	
	from genuine olive oils.	151
43	Detection of extraneous oils in Croatina olive oil	
	with 5% soybean oil by a comparison of	
	mathematical algorithms with a data base built from genuine olive oils.	152
44	Detection of extraneous oils in Croatina olive oil	102
	with10% soybean oil by a comparison of	
	mathematical algorithms with a data base built	153
45	from genuine olive oils. Detection of extraneous oils in Croatina olive oil	155
10	with 2% corn oil by a comparison of mathematical	
	algorithms with a data base built from genuine	
46	olive oils. Detection of extraneous oils Croatina olive oil	154
40	with 5% corn oil by a comparison of mathematical	
	algorithms with a data base built from genuine	
	olive oils.	155
47	Detection of extraneous oils in Croatina olive oil with 10% corn oil by a comparison of	
	mathematical algorithms with a data base built	
	from genuine olive oils.	156
48	Comparison of triglycerides composition from	1
	lipase hydrolysis and HPLC analysis.	157

49	Comparison of the chemical assignment of bands in the FTIR spectra for pure oils (Croatina and koroneiki olive oils, sunflower, soybean and corn oils.	168-169
50	Assignment of the main resonances in the ¹ H NMR spectrum of Koroneiki olive oil and its binary admixtures with 10% (w/w) (corn, sunflower and soybean oils).	184
51	Assignment of the main resonances in the ¹ H NMR spectra of Croatina olive oil and its binary admixtures with 10% (w/w) (corn, sunflower and	
52	soybean oils). Integrals of the ¹ H NMR main resonance groups for Koroneiki olive oil and its binary admixtures with 10% (w/w) corn, sunflower and soybean	185
	oils.	194
53	Integrals of the ¹ H NMR main resonance groups for Croatina olive oil and its binary admixtures with 10% (w/w) corn, soybean and sunflower oils.	195
54	Assignment of the main resonances in the ¹³ C NMR spectrum of Koroneiki olive oil and its binary admixtures with 10% (w/w) (corn, sunflower and soybean oils).	205-206
55	Assignment of the main resonances in the 13 C NMR spectrum of Croatina olive oil and its binary admixtures with 10% (w/w) (corn, sunflower and	
	soybean oils).	207-208

LIST OF FIGURES

No.	Title	Page
1	Chemical structure of triacylglycerol species	126
2	Flow diagram of the sequential procedure	136
3	Comparison of the chemical assignment of bands in the FT-IR spectra for Koroneiki olive oil, sunflower, soybean and corn oils.	170
4	Comparison of the chemical assignment of bands in the FT-IR spectra for Croatina olive oil, sunflower, soybean and corn oils.	171
5	Comparison of the chemical assignment of bands in the FT-IR spectra for Koroneiki olive oil and 2%, 5% and 10% corn oil.	171
б	Comparison of the chemical assignment of bands in the FT-IR spectra for Koroneiki olive oil and 2%, 5% and 10% sunflower oil.	173
7	Comparison of the chemical assignment of bands in the FT-IR spectra for Koroneiki olive oil and 2%, 5% and 10% soybean oil.	173
8	Comparison of the chemical assignment of bands in the FT-IR spectra for Croatina olive oil and 2%, 5% and 10% corn oil.	175
9	Comparison of the chemical assignment of bands in the FT-IR spectra for Croatina olive oil and 2%, 5% and 10% sunflower oil.	176
10	Comparison of the chemical assignment of bands in the FT-IR spectra for Croatina olive oil and 2%, 5% and 10% soybean oil.	
11	Typical ¹ H NMR spectra of koroneiki olive oil	177 186

12	Typical ¹ H NMR spectra of koroneiki olive oil with 10%Corn oil.	187
13	Typical ¹ H NMR spectra of koroneiki olive oil with 10% sunflower oil.	188
14	Typical ¹ H NMR spectra of koroneiki olive oil with 10% soybean oil.	189
15	Typical ¹ H NMR spectra of Croatina olive oil.	190
16	Typical ¹ H NMR spectra of Croatina olive oil with 10%Corn oil.	191
17	Typical ¹ H NMR spectra of Croatina olive oil with 10% sunflower oil.	192
18	Typical ¹ H NMR spectra of Croatina olive oil with 10% soybean oil.	193
19	Assignments of the resonances around 2.04 ppm in the ¹ H NMR spectra of olive oils and their binary admixtures.	196
20	Relationship between the total sum of linoleic and linolenic acids and their corresponding integrals at 2.7 ppm for Koroneiki olive oil and its binary admixtures with 10% (w/w) corn, sunflower and soybean oils.	190
21	Relationship between the total sum of linoleic and linolenic acids and their corresponding integrals at 2.7 ppm for Croatina olive oil and its binary admixtures with 10% (w/w) corn, sunflower and soybean oils.	198
22	¹³ C NMR spectrum of an extra virgin olive oil sample in $CDCl_3$ solution.	200
23	Typical ¹³ C NMR spectra of Koroneiki olive oil.	209
24	Typical ¹³ C NMR spectra of Koroneiki olive oil with 10% corn oil.	210
25	Typical ¹³ C NMR spectra of Koroneiki olive oil with 10% sunflower oil.	211

26	Typical ¹³ C NMR spectra of Koroneiki olive oil with	
	10% soybean oil.	212
27	Typical ¹³ C NMR spectra of Croatina olive oil.	213
28	Typical ¹³ C NMR spectra of Croatina olive oil with	
	10% corn oil.	214
29	Typical ¹³ C NMR spectra of Croatina olive oil with	
	10% sunflower oil.	215
30	Typical ¹³ C NMR spectra of Croatina olive oil with	
	10% soybean oil.	216

LIST OF ABBREVIATIONS

APCI	Atmospheric PressureChemical Ionization
APCI-MS	Atmospheric Pressure Chemical Ionization - Mass Spectrometry
APPI	Atmospheric Pressure Photoionization
ATR	Attenuated Total Reflectance
ATR-FTIR	Attenuated Total Reflection - Fourier Transform Infrared
CALB	Candida antarctica lipase B
CDA	Canonical Discriminant Analysis
CVA	Canonical VariateAnalysis
CGC	Capillary Gas Chromatography
CGC-FID	Capillary Gas Chromatography -Flame Ionization Detector
CN	Carbon Number
CAD	Charged Aerosol Detector
CBTs	Classification Binary Trees
DSC	Differential scanning calorimeter
DA	Discriminant Analysis
DEPT	Distortionless Enhancement By Polarization Transfer
DHA	Docosahexaenoic Acid
ECN42	Equivalent Carbon Number 42
ELSD	Evaporative Light Scattering Detection
EEFS	Excitation–Emission Fluorescence Spectroscopy
EVOO	Extra Virgin Olive Oil
FA	Fatty Acid
FAME	Fatty Acid Methyl Ester
FTIR	Fourier Transform Infrared
FT-NIR	Fourier Transform Near-Infrared
FT-Raman	Fourier Transform Raman

FT	Fourier-Transform		
GC	Gas Chromatography		
GLC	Gas Liquid Chromatography		
GA-PLS	Genetic Algorithms - Partial Least Square		
GA-PLS	Genetic algorithms- Partial Least Square		
HDL	High Density Lipoprotein		
HPLC	High Performance Liquid Chromatography		
HPLC-UV	High Performance Liquid Chromatography Method With Ultra-		
	Violet Detection		
HT-GC/EI-MS	High Temperature-Gas Chromatographic Method Coupled To		
	Electron Ionization-Mass Spectrometry		
IR	Infrared Spectrophotometry		
IOC	International olive council		
iPLS	interval Partial Least Square		
KNN	K-Nearest Neighbours		
LODs	Limit Of Detections		
LDA	Linear Discriminant Analysis		
OOL	Linoleo-Diolein		
LC	Liquid Chromatography		
LC-APPI-MS	Liquid Chromatography–Atmospheric Pressure Photoionization-		
LC-AFFF-WS	Mass Spectrometry		
MS	Mass Spectrometry		
	Matrix-Assisted Laser Desorption Ionization - Time Of Flight-		
MALDI-TOF/MS	Mass Spectrometry		
MAEV	Mean Absolute Error of Validation		
MdAEV	Median Absolute Error of Validation		
MUFA	Mono-Unsaturated Fatty Acid		

MRM	Multiple reaction monitoring	
N-PLS	Multi-way Partial Least Squares	
NIR	Near Infrared	
	Non-Aqueous Reverse-Phase - Liquid Chromatography-	
NARP-LC-RID	Refractive Index Detector	
NTP	Non-Thermal Plasma	
NP	Normal-Phase	
NMR	Nuclear Magnetic Resonance	
NOE	Nuclear Overhauser Enhancement	
OLL	Oleo- Di-Linolein	
OPO	Olive–Pomace Oil	
OCPLS	One-Class Partial Least Squares	
OSC	Orthogonal Signal Correction	
PLL	Palmito-Di-Linolein	
POO	Palmito-Di-Olein	
POL	Palmito-Oleo-Linolein	
PARAFAC	Parallel Factor Analysis	
PLS	Partial Least Square	
PLS-R	Partial Least Square-Regression	
PLS-DA	Partial Least Squares Discriminant Analysis	
PCI	Photo-Induced Chemical Ionization	
PUFAs	Polyunsaturated Fatty Acids	
PCA	Principal Component Analysis	
PCR	Principle Component Regression	
RI	Refractive Index	
RID	Refractive Index Detector	
REP	Relative Error of Prediction	

ABSTRACT

Amany Nagah Ali Mostafa, Some Chemical Studies on Detecting Olive Oil Adulteration, Ph.D., Department of chemistry, Faculty of Science, Benha University, 2019.

This study focused on the application of three different chromatographic and three different spectroscopic methods for identification of adulteration of two olive oil varieties (Koroneiki and Croatina) with cheaper vegetable oils (sunflower, soybean and corn oils). It was found from fatty acids profile that, adulteration of extra virgin olive oils with high linoleic acid oils could be detected with 10% (w/w) addition of both soybean and corn oils while, sunflower oil addition could not be found out at 10% (w/w). 1,3 specific lipase hydrolysis followed by gas chromatography and HPLC were used for detection of adulteration by studying the change in triglycerides composition. It was found that a decrease in OOO and POO and an increase in OOL, POL, OLL and PLL occurred with 2, 5 and 10% additions of sunflower, soybean and corn oil for Koroneiki and Croatina olive oils respectively. According to global method procedures, only pure Koroneiki and Croatina olive oils were genuine oils while olive oils admixtures with sunflower, soybean and corn oils were not genuine olive oils.

¹H NMR spectra of olive oils and their binary admixtures with 10% (w/w) (sunflower, soybean and corn oils) were discussed. The most obvious difference between the spectra of olive oils and their binary admixtures spectra was the appearance of the signal around 2.04 ppm due to allylic protons of linoleic acid in the binary admixtures while being absent in pure olive oils. This peak could be functioned as indicator of

adulteration of olive oil with high linoleic acid oils. Furthermore, the peak integrals at 2.7 ppm showed a good correlation with the total sum of linoleic and linolenic acids.

جامعة بنها كليسة العلوم قسم الكيمياء

بعض الدراسات الكيميائية على كشف الغش في زيت الزيتون

رسالة مقدمة من أمانى نجاح على مصطفى فرحات

لجنة التحكيم

التوقيع	الوظيفة	الاسم	م
	أستاذ علوم وتكنولوجيا الأغذية كلية الزراعة – جامعة القاهرة	أ.د/ صلاح الدين حسين سيد أبو ريه	1
	أستاذ الكيمياء العضوية كلية العلوم- جامعة الزقازيق	أ.د/ محمد جمعه محمد عاصي	۲
	أستاذ الكيمياء العضوية التطبيقية ووكيل كلية العلوم جامعة بنها	أ.د. أشرف عبد الحميد فاروق وصفى	٣
	أستاذ علوم وتكنولوجيا الأغذية معهد بحوث تكنولوجيا الاغذية مركز البحوث الزراعية	أ.د.علاء عزوز سلامه عبد المقصود	٤