Surface seal formation and its implication in calcareous soils characteristics degradation.

BY

AHMED MUHAMMAD EL-HUSSEINY AHMED

A thesis submitted in partial fulfillment Of The requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Soil Science

Department of Soils and Water Moshtohor Faculty of Agriculture, Benha University.

2019

Table of Content

Р	age	•
•	us	-

1	Introduction	1
2	Review of Literature	2
	2.1. Soil Degradation	2
	2.2. Definitions	4
	2.2.1 Rainfall-Induced Seal	4
	2.2.2 Soil surface structural crust	4
	2.3. Soil Surface Seal Formation	4
	2.3.1. Mechanism of Seal formation	5
	2.3.2. Processes involved in seal formation	6
	2.3.3. Morphology of the seal	7
	2.4. Factors affecting rainfall- induced seal	9
	2.4.1. Physical Rainfall Characteristics	9
	2.4.1.1. Rainfall intensity	9
	2.4.1.2. Rainfall Kinetic Energy	10
	2.4.1.3. Rainfall Drop Size Distribution	11
	2.4.1.4. Rainfall Duration	12
	2.4.2. Soil Properties	13
	2.4.2.1. Soil Texture	13
	2.4.2.2. Soil Structure	13
	2.4.2.3. Soil Mineralogy	15
	2.4.2.4. Soil Chemistry	15
	2.4.2.5. Organic Matter	16
	2.4.2.6. Carbonate Content	16
	2.4.3. Landscape Relief	17
	2.4.4. Tillage and Surface Cover	17
	2.4.5. Antecedent Moisture Content	18

	2.5.	Seal formation and its effect on soil	
		properties	19
		2.5.1. Sealing Impact on soil physical	
		properties	19
		2.5.1.1. Soil Hydrology	19
		2.5.1.2. Bulk density and porosity	20
		2.5.2. Sealing impact on soil fertility	20
		2.5.3. Surface sealing and soil sustainability	21
		2.5.4. Sealing and plant growth	21
3	Mat	erials and Methods	24
	3.1.]	Location	24
	3.2.]	Physical Analysis of soils	24
	3.3.	Chemical Analysis of soils	25
	3.4.	Chemical Analysis of water	25
	3.5.]	Experimental Work	26
		3.5.1. Rain Water Simulator Assembly	26
		3.5.1.1. Operation of the Simulator	28
		3.5.1.2. Calibration of the Simulator	29
		3.5.2. The Germiometer	33
		3.5.2.1. Design of the Germinometer	33
		3.5.2.2. Germinometer Accessories	33
		3.5.2.3. Operation	36
		3.5.2.4. Readings and Calculations	37
		3.5.3. The Main Experiment	38
		3.5.3.1. Preparing of Soil Containers	39

	3.5.3.2. Preparing of The Simulator	39
	3.5.3.3. Stages of Experiment	40
4	Results and Discussion	41
	4.1. Basic physical and chemical properties of the studied soils	41
	4.2. Factors affecting rainfall-induced seal formation	45
	4.2.1. Rainstorms Characteristics	45
	4.2.2. Soil Properties	46
	4.3. Effect of sealing on soil characteristics	48
	4.3.1. Effect of sealing on soil sustainability	48
	4.3.2. Effect of sealing on translocation of dissolved	
	salts	50
	4.3.3. Effect of sealing on soil compaction	52
	4.3.4. Effect of sealing on soil fertility	54
	4.3.5. Effect of sealing on seedling emergence	59
5	Summary and Conclusion	76
6	References	78
7	Arabic Summary	

List of Tables

Table	Title	Page
1	Packing of Soils	39
2	Characterization of the rainstorms	40
3	Some basic characteristics of the studied soils	41
4	Total aggregates size and mean weight diameter (MWD) of the studied soils	42
5	Some physical characteristics of the studied soils	43
6	Chemical analyses of the studied soils	43
7	Availabe N, P and K in the soils	44
8	Chemical analyses of tap water	44
9	Effect of rainstorms characteristics and soil properties on sealing rates	47
10	Effect of sealing on soil losses	49
11	Effect of sealing on translocation of dissolved salts	51
12	Effect of sealing on increasing of soil bulk density	53
13	Effect of sealing on N losses	56
14	Effect of sealing on P losses	57
15	Effect of sealing on K losses	58
16	Values and depths of GR_{max} and GR_c for soil 1	61
17	Values and depths of GR_{max} and GR_c for soil 2	65
18	Values and depths of GR_{max} and GR_c for soil 3	69
19	Values and depths of GR_{max} and GR_{c} for soil 4	73

List of Figures

Fig.	Title	Page
1	Principle types of soil degradation	3
2	Schematic diagram of the Overhead Water Simulator	30
3	Schematic diagram of the Overhead Water Simulator stage	31
4	Schematic diagram of soil containers	31
5	Schematic diagram of Germination resistance measuring holes distribution in soil containers bottom	32
6	Schematic diagram of Germiometer	34
7	Schematic diagram of the holder of the soil containers	35
8	Relationship between moisture content and germination resistance (GR) for soil 1	60
9	Relationship between moisture content and germination resistance (GR) for soil 2	64
10	Relationship between moisture content and germination resistance (GR) for soil 3	68
11	Relationship between moisture content and germination resistance (GR) for soil 4	72

5. Summary and Conclusion

The current work aims at evaluating sealing rates of calcareous soil and its impact on soil characteristics thus seedling emergence. Soil were collected from the surface 0-30 cm from four different locations at northwestern coast of Egypt namely,

- **1.** Soil 1 from Borg El-Arab site
- **2.** Soil 2 from Swani Jaber site
- **3.** Soil 3 from El-Kasr site
- **4.** Soil 4 from Sidi Barrani site

The study was conducted under greenhouse conditions using a modified rainfall simulator and the "Germiometer".

- 1. Soil sealing ranged between 5.00 and 64.58%. The effect of rainstorm on depended on factors which affect aggregates stability such as texture, CaCO3 content and sodicity. Soil characteristics had a direct effect on sealing rates. High sodicity encourages strong sealing in heavy textured soils. High bulk density associated with sealing in coarse textured soils. The effect of slope was restricted on expansion of sealing impacts on soil properties.
- **2.** Soil erosion was associated with sealing. Soil looses ranged between 0.02 and 42.56 Mg ha⁻¹ which increased by slope up to 0.18 and 70.87 Mg ha⁻¹.
- **3.** Translocation of soil salinity was associated with sealing, depending on sealing rates and soil salinity. Translocated salts ranged between 0.007 and 1.20 Mg h^{a-1} and increased by slope up to 0.02 and 3.13 Mg ha⁻¹.
- **4.** Soil compaction was associated with sealing rate and negatively with initial bulk density. Sealing increased bulk density at 7.15 and 96.10% and decreased by slope to 3.26 and 81.58%.
- **5.** Nutrient losses was related with sealing rates, due to sealing rates nitrogen loss was ranged between 0.08 and

11.64 kg ha⁻¹, while phosphorus loss ranged between 0.010 and 0.182 kg ha⁻¹, and potassium loss ranged between 0.51and 64.03 kg ha⁻¹. Due to slope these rates was increased, where nitrogen loss ranged between 0.38 and 20.67 kg ha⁻¹, phosphorus loss ranged between 0.013and0.245kg ha⁻¹ and potassium loss ranged between 1.24 and 94.64 kg ha⁻¹.

- **6.** Soil resistance for seedling emergence was affected negatively by moisture, this relationship between soil resistance and moisture content was negatively correlated with soil depth. The maximum germination resistance of soil (GR_{max}) was at 5-4 depth and ranged between 0.91 and 7.63 MPa. The severity of soil resistance on seedling emergence varied between slight to extremely sever. The maximum resistance of crust for seedling emergence was at 4-3 cm depth and ranged between 0.59 and 3.75 MPa. The severity of crust resistance varied between slight to sever.
- 7. Planting depth could be the major impedance for seedling emergence. Surface crust, under northwestern coast area conditions causes planting depth not to exceed 3 cm at moisture content between 45 75% of the field capacity.

" تكوين الختم السطحى ومساهمته في تدهور خواص الأراضى الجيرية "

رسالة مقدمة من أحمد محمد الحسينۍ أحمد بكالوريوس العلوم الزراعية (أراضى) - كلية الزراعة بمشتهر- جامعة بنها 2003 ماجستير العلوم الزراعية (أراضى) - كلية الزراعة بمشتهر - جامعة بنها 2011

> للحصول على درجة دكتوراه الفلسفة فى العلوم الزراعية (أراضى)

قســم الأراضــى والميام كلية الزراعة بمشتهر حامعة بنها

2019