THE IMPACT OF MAGNETIC UNITS ON THE PERFORMANCE OF AEROPONIC AND NFT SYSTEMS FOR STRAWBERRY AND LETTUCE

By

WESSAM ESSAM ELSSAWY ABD ELLBAKY

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2011 M.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2016

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering Faculty of Agriculture Cairo University EGYPT

2020

Format reviewer

Vice Dean of Graduate studies

Name of Candidate: Wessam Elssam Elssawy Abd-ElbakyDegree: PhD.Title of Thesis: The impact of magnetic units on the performance of aeroponic and
NFT systems for strawberry and lettuceNFT systems for strawberry and lettuceSupervisors:Dr. Mohamed Elsayed Abu arab,
Dr. Mohamed Abd Elwahab Kassem,
Dr. Essam Eldeen Wassef.Image: Comparison of the performance of the perfor

ABSTRACT

Scarcity water became the risk that threat world, so new technologies have been developed to make crop production possible in areas which are not suitable to traditional farming system due to different factors such as fresh water scarcity, undesirable climatic conditions and problematic soil condition. The aims of this study were 1- Designing and installation the most widely used soilless culture systems (hydroponic systems. 2- Developing a magnetic treatment unit with different magnetic flux densities. 3- Checking the effect of coupling soilless culture systems with magnetic units on nutrient solution characteristics, water productivity and production of strawberry and lettuce. 4- Achieving the highest water productivity, high quality yield, increasing water quality and area unit use efficiency by vertical expanding of soilless culture systems. Three hydroponic (Tower aeroponic, Pyramidal aeroponic and NFT) systems and three levels of magnetic units (magnetized water level 1; MWL1 = 3800 gauss, magnetized water level 2; MWL2 = 5250 gauss, magnetized water level 3; MWL3 = 6300 gauss, and regular water was represented as a control) were tested. There were an increase in TDS and a decrease in pH of nutrient solution through seasons of strawberry and lettuce with increasing the magnetic level as the time passes the irrigation period.

For strawberry, the maximum yield recorded by tower aeroponic system with magnetic water level 3 (MWL3) for both growing seasons, respectively. The maximum water productivity was registered under tower aeroponic system irrigated with MWL3 for the first season and the second season, respectively. Increased magnetic intensity led in lower water consumption in all hydroponic systems compared to control (regular water).

For lettuce, the maximum yield was for both seasons were recorded with NFT system under MWL3. Maximum water productivity was recorded with the integration of NFT system with MWL3 and Tower system with MWL3 in both seasons, respectively. In addition, leaf performance curves and lettuce yield and quality were increased with the integration of NFT system with MWL3 compared to others.

Keywords: Hydroponics, NFT, Tower, Pyramidal, Magnetic water, Strawberry, Lettuce.

CONTENTS

Title
INTRODUCTION
REVIEW OF LITERATURE
1. Water state in world
2. Traditional agriculture techniques
a. Closed systems of agriculture
b. Open systems of agriculture
3. Soilless culture
a. Necessity of Hydroponics
b. Advantages of hydroponics over conventional
agriculture
C. Limitations of hydroponics
d. Classification of soilless culture systems
(1). Water culture or hydroponic systems
(2). Substrate culture
e. Impact of nutrition on yield in soilless culture
f. Impact of nutrition on produce quality in soilless culture
g. Interaction between irrigation schedules and plant growth in
soilless culture
h. Irrigation in hydroponics
i. Water Holding Capacity
j. Design and construction procedures of soilless culture
systems
4. Growing mediums
5. Magnetic treated water
a. Explanations of occurring of changing water
properties after magnetization
b. Water characteristics changing after magnetization
(1). Surface tension (ST)
(2). Electrical conductivity (EC)
(3). Hydrogen ion concentration (pH)
6. Strawberry as an economic crop in hydroponic system
7. Lettuce in hydroponic systems

CONTENTS (continued)

MATERIAL AND METHODS	46
1. Experiment location	46
2. Structure of greenhouse	46
3. Equipment for controlled greenhouse	47
a. Cooling pad	47
b. Exhaust fans	48
c. Controller sensor	49
d. Hygro Thermo- Anemometer	49
4. Weather conditions under controlled greenhouse	50
5. Crop administration	51
a. Plant adaptation	51
b. Nutrients solution	51
6. System installation and experimental treatments	52
a. NFT system	56
b. Pyramidal aeroponic system	57
c. Tower aeroponic system	59
7. Magnetic device (MD)	60
a. Magnetic device design	62
b. Magnetic device considerations	63
8. Evaluation of irrigation systems	63
9. Assessment criteria	65
a. Irrigation water measurement	65
(1). Water flow sensor	65
(2). Flow meter circuit	66
(3). Components of arduino flow meter	67
b. Strawberry production measurements	69
c. Lettuce production measurements	74
10. Statistical analysis	76

CONTENTS (continued)

11. Economical assessments of the systems	76
RESULTS AND DISCUSSION	78
1. Magnetic units design	78
2. Effect of magnetic units on nutrient solution characteristics for strawberrya. Total soluble solids, N, P and K concentration and pH	82 82
b. Optical properties of water	85
3. Strawberry production	85
a. Irrigation water consumptions	85
b. Yield and water productivity	90
c. Plant growth parameters	94
d. Quality parameters of production	104
4. Effect of magnetic units on nutrient solution characteristics for lettuce productiona. Total soluble solids, N, P and K concentration and pH	111 111
b. Optical properties of water	114
5. Lettuce production	114
a. Irrigation water consumptions	114
b. Yield and water productivity	115
c. Leaf performance curves	116
d. Plant growth parameter	124
e. Quality parameters of production	129
6. The Economic analysis	137
CONCULSION	141
SUMMARY	142
REFERENCES	153

LIST OF TABLES

No. 1.	Title Specifications of Hygro Thermo – Anemometer	Page 50
2.	Average of climatic variables in controlled greenhouse	51
3.	Element concentrations in the used nutrient solution	52
4.	Specifications of magnets used for experiments	61
5.	The hydraulic evaluation parameters of foggers at different operating pressure	65
6.	Specifications of Color analyzer	72
7.	Specifications of ECO Sense EC300	74
8.	Specifications of ECO sense pH 100	75
9.	The lifetime for systems materials	77
10.	Magnetic flux density (Bm) at operating point	78
11.	The magnetic flux density in PVC and metal tubes	80
12.	The influence of soilless culture systems, irrigation water treatments and their interaction on chosen plant growth parameters.	99
13.	The influence of soilless culture systems, irrigation water treatments and their interaction on tetraacidity, TSS, firmness of fruit and color (R,G, B).	107
14.	The influence of soilless culture systems, irrigation water treatments and their interaction on chosen plant growth parameters	126
15.	The influence of soilless culture systems, irrigation water treatments on TSS, Firmness, Chlorophyll, Dry matter, N, P and K of lettuce	133

LIST OF TABLES (continued)

16.	The Economic analysis of environmental controlled greenhouse for lettuce production	139
17.	The Economic analysis of environmental controlled greenhouse for strawberry production	140

LIST OF FIGURES

No.	Title	Page
1.	Open-loop and Close-loop System of Soilless Culture	10
2.	Structure of water molecules	. 37
3.	Water molecule	38
4.	Environmental controlled greenhouse	47
5.	Cooling pad inside greenhouse	48
6.	Exhaust fans of greenhouse	49
7.	A controller sensor of greenhouse	50
8.	Hygro Thermo- Anemometer	. 50
9.	Timer using for irrigation interval	53
10.	Plan view of environmental controlled greenhouse and experimental treatments	54
11.	Layout of environmental controlled greenhouse and experimental treatments	55
12.	Elevation view of NFT system	56
13.	NFT system used in the experiment	. 57
14.	Fogger used in pyramidal aeroponic and tower aeroponic	58
15.	Elevation view of pyramidal aeroponic system	. 58
16.	Pyramidal aeroponics installed in the greenhouse	. 59

LIST OF FIGURES (continued)

17.	Elevation view of tower aeroponics	60
18.	Tower aeroponics installed in greenhouse	60
19.	Neodymium magnets were coated by Nickel Copper Nickel	62
20.	Plan view of fogger application evaluation experiment	64
21.	Water flow sensor	66
22.	Circuit of arduino flow meter	67
23.	Arduino flow meter	68
24.	Electronic digital calliper	69
25.	Digital balance	70
26.	Refractometer for TSS measuring	71
27.	Penetrometern for firmness measuring	72
28.	Color analyzer device	72
29.	Electrical conductivity meter	73
30.	pH meter	73
31.	Chlorophyll meter	75
32.	Magnetic flux density through pvc tube	79
33.	Magnetic flux density through metal tube	79
34.	Section of magnetic device	81
35.	Magnetic flux density in PVC tube	81
36.	Effects of different water treatment values of pH and TDS	83

LIST OF FIGURES (continued)

37.	Effects of different magnetic levels on values mean of N, P and K	84
38.	Water consumption for different soilless culture systems under regular and magnetic water	~-
39.	Total crop water used for different soilless culture systems under regular and magnetic water	87 89
40.	Productivity of different soilless culture systems under regular and magnetic water	91
41.	Water productivity of soilless culture systems under regular and magnetic water levels	93
42.	Effects of different magnetic levels on pH and TDS through nutrient solution circulation period	112
43.	Effects of different magnetic levels on N, P and K concentrations of nutrient solution	113
44.	Water consumption for different hydroponic systems under regular water and magnetized water levels	117
45.	Total crop water consumption for different hydroponic systems with regular and magnetic water	119
46.	Productivity of different hydroponic systems under normal and magnetic water	120
47.	Water productivity of hydroponic systems under normal and magnetic water levels	121
48.	Effect of hydroponic and magnetic levels through different stages on leave number	122