GENETIC ANALYSIS FOR ASSOCIATION OF SOME GENETIC MARKERS AND MILK YIELD IN DAIRY CATTLE

BY

Mohamed Hamada Mohamed Abd El-hameid

B.Sc. Agricultural Sciences (Animal Production), 1994 Menoufia University M.Sc. Agricultural Sciences (Animal Breeding), 2011 Menoufia University

Submitted in Partial Fulfillment of the Requirements for the Degree of

> Ph.D. Degree in ANIMAL BREEDING To

The Department of Animal Production Faculty of Agriculture at Moshtohor Benha University Egypt

2019

- I

LIST OF CONTENTS CONTENTS

CONTENTS	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1 Variance components , heritability, and genetic and phenotypic trends	5
2.1.1 Test day and RRM advantages	5
2.1.2 Variance components for test-day milk, fat and protein y	vields
2.1.3 Heritability estimates for test-day milk, fat and protein yields	11
2.1.4 Reviewed genetic and phenotypic trends for milk TD, fat and protein yields	13
2.2 Molecular analysis of milk, fat and protein yields	16
2.2.1 Lactoferrin and prolactin as major genes	16
2.2.2 Single Nucleotide Polymorphism (SNP) and molecular weights of lactoferrin and prolactin genes	17
2.2.2.1 SNP for lactoferrine gene	17
2.2.2.2 SNP for prolactin gene	19
2.2.3 Genotypic and allelic frequencies for lactoferrin and prolactin genes	20
2.2.3.1 Genotyping for lactoferrin gene	20
2.2.3.2 Genotyping for prolactin gene	21
2.2.4 Heterozygosis and fixation index (F_{IS}) for lactoferrin and prolactin genes	22
2.2.5 Associations among milk yield traits and age at first calving and lactoferrin and prolactin genes	23
2.2.5.1 Associations among milk yield traits and age at first calving and Lactoferrin gene	23
2.2.5.2 Associations among milk yield traits and age at first calving and Prolactin gene	24
2.2.6 Associations among milk yield traits and another major genes	26

3. MATERIALS AND METHODS	35
3.1 Management and data structure	35
3.2 Measuring fat and protein percentages in milk	36
3.3 Test day statistical analyses 3.3.1 Estimating (co) variance components using random	37
regression model	37
3.3.2 Predicting the breeding values of the genetic trend	41
3.3.3 Plotting the genetic and phenotypic trends	43
3.4 Genotyping of Lactoferrin and Prolactin genes	43
3.4.1 Experimental work and DNA extraction	43
3.4.2 Primers design and PCR performed for lactoferrin and prolactin genes	44
3.4.3 Digestion of PCR products using restriction enzymes	46
3.4.4 Characterization of Friesian and local Balai cattle in terms of LF and PRL genes	47
3.4.5 Model for determining the association between LF and PRL genes and milk yields and components and age at first calving	48
4. RESULTS AND DISCUSSION	49
4.1 Test day milk traits and random regression model	49
4.1.1 Means and variations	49
4.1.2 Variance components	50
4.1.3 Heritability Estimates	53
4.1.4 Predicted breeding value (PBV)	54
4.1.5 Phenotypic trend	55
4.1.6 Genetic trend	55
4.2 Genotyping of lactoferrin and prolactin genes	59
4.2.1 Molecular analysis for genotypes polymorphism of lactoferrin gene using <i>Hinf1</i> restriction enzyme	59
4.2.1.1 Molecular weights	59
4.2.1.2 Genotypic and allelic frequencies	60

4.2.1.3 Heterozygosis and fixation index	61
4.2.1.4 Differences among milk traits in different HinfI genotypes of lactoferrin gene	62
4.2.2 Molecular analysis for genotypes of prolactin gene using <i>Nael</i> restriction enzyme	66
4.2.2.1 Molecular weights	66
4.2.2.2 Genotypic and allelic frequencies	67
4.2.2.3 Heterozygosis and fixation index	67
4.2.2.4 Differences among milk traits in different <i>Nael</i> genotypes of prolactin gene	70
4.2.3 Molecular analysis for genotypes polymorphism of prolactin gene using <i>Sm/l</i> restriction enzyme	72
4.2.3.2 Genetypic and allelic frequencies	72
4.2.3.2 Genotypic and anene frequencies	73
4.2.3.3 Heterozygosis and fixation index	74
4.2.3.4 Differences among milk traits in different Sm/l genotypes of prolactin gene	75
5. SUMMARY	79
6. CONCLUSIONS	82
7. REFERENCES	84
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
No.		No.
	The estimates of additive genetic (σ^2_a) , permanent	
1	environmental (σ_{pe}), residual (σ_{e}) and phenotypic variances (σ_{P}^{2}) for test-day milk, fat and protein yields in	8-10
	dairy cattle as cited in the literature	
2	Estimates of heritability for test-day milk, fat and protein vields as cited in the literature for dairy cattle	12-13
3	Genetic and phenotypic trends for test-day milk, fat and	14-15
	protein yields in dairy cattle as cited in the literature Restriction enzymes, primers and molecular weights for	
4	lactoferrin gene as cited in literature	18
5	Genes associated with milk yield and milk components	28
	as cited in literature	26
6	Structure of the test_day data set for Friesian dairy cattle	36
7	The first six Legendre polynomials functions of standardized units of time w	38
0	The number of cows in each herd and the number of	4.4
ð	lactation records in all data set	44
9	The primers sequencing for PCR of lactoferrin and prolactin genes	45
	Number of observations, means, standard deviations (SD) and coefficients of variation (CV) for test_day milk	
10	(TDMY), fat (TDFY) and protein (TDPY) yields and age at first calving (AFC) in Friesian dairy cattle raised in	49
	Egypt	
	Minimum, maximum and ranges of predicted breeding	
11	values (PBV), predicted error variance (PEV) and	
	accuracy of prediction $(r_{A\hat{A}})$ for TD milk, fat, protein	55
	yields and age at first carving in Friesian dairy cattle	
	The observed and expected number of cows in <i>Hinfl</i>	
	genotypes polymorphism of lactoferrin gene, genotypic	(1
12	frequency, gene frequency and Chi square values (χ 2) in	61
	the three dairy cattle herds	
13	The observed (H_o) and expected (H_e) heterozygosity and	
	standard error (SE), PIC and F _{IS} for <i>Hinfl</i>	62
	of Friesian and local Baladi.	

14	Least squares means ¹ and standard errors for milk, fat, protein yields and age at first calving in different patterns of <i>HinfI</i> restriction enzyme of lactoferrin gene for Friesian and local Baladi cattle.	64
15	The observed and expected number of cows in <i>Nael</i> polymorphism genotypes of prolactin gene, genotypic frequency, gene frequency and Chi-square values (χ 2) of the three dairy cattle herds	68
16	The observed (H_o) and expected (H_e) heterozygosis and standard errors (SE), PIC and F_{IS} for <i>Nael</i> polymorphisms of prolactin gene in the three populations of Friesian and local Baladi cattle .	69
17	Least squares means ¹ and standard errors for milk, fat, protein yields and age at first calving in different genotypes of <i>Nael</i> restriction enzyme of prolactin gene for Sakha and Elkarada Friesians and Elserw local Baladi cattle herds	71
18	The observed and expected number of cows in Sm/l polymorphism genotypes of prolactin gene, genotypic frequency, gene frequency and their Chi-square values ($\chi 2$) in the three dairy cattle herds	74
19	The observed (H_o) and expected (H_e) heterozygosity and standard errors (SE), PIC and F_{IS} for the Sm/l polymorphisms of prolactin gene in the three populations of Friesian and local Baladi cattle.	75
20	The least squares means ¹ and standard errors for milk, fat, protein yields and age at first calving in different patterns of Sm/l restriction enzyme of prolactin gene in Sakha and Elkarada Friesian herds and Elserw local Baladi cattle	77

LIST OF FIGURES

Figure No.		Page No.
1	Estimates of additive genetic (V_A), permanent environmental (V_{Pe}), residual variances (V_E) and phenotypic variances (V_P) for test day milk yield (kg)	52
2	Estimates of additive genetic (V_A), permanent environmental (V_{Pe}), residual variances (V_E) and phenotypic variances (V_P) for test day fat yield (g)	52
3	Estimates of additive genetic (V_A), permanent environmental (V_{Pe}), residual variances (V_E) and phenotypic variances (V_P) for test day protein yield (<i>kg</i>)	52
4	Estimates of additive genetic (V_A) , permanent environmental (V_{Pe}) , residual variances (V_E) and phenotypic variances (V_P) for age at first calving (month)	52
5	Estimates of heritability of test-day milk (<i>TDMY</i>), fat (<i>TDFY</i>) and protein (<i>TDPY</i>) yields and age at first calving (<i>AFC</i>)	54
6	Phenotypic trend for test-day milk (a), fat (b), protein yields(c) and age at first calving (d) in Friesian cattle raised in Egypt	56
7a	Genetic trend for test-day milk and fat yields in Friesian cattle raise in Egypt	57
7b	Genetic trend for test-day protein yield and age at first calving in Friesian cattle raise in Egypt	58
8	Representative restriction pattern at LF- <i>Hinf1</i> locus on 3.0% agarose gel	59
9	Representative restriction pattern at PRL- <i>Nael</i> locus on 3.0% agarose gel	67
10	Representative restriction pattern at PRL- <i>Sm/l</i> locus on 3.0% agarose gel	73

5. SUMMARY

The first aim of this study was to detect genetic and phenotypic trends for test-day milk (TDMY), fat (TDFY) and protein (TDPY) yields and age at first calving (AFC) in Frisian cattle raised in Egypt applying the random regression model (RRM). Data of 5237 test days (TD) milk yield traits were recorded for 953 Friesian cows, daughters of 208 sires and 944 dams from two herds belonging to the Animal Production Research Institute, Egypt. Ten-month classes of lactation days were considered for the test-day yields. The model included the random effects of direct additive genetic, permanent environment and error, while the fixed effects were herd-year-season of calving and parity, which was modeled by orthogonal Legendre polynomials.

The second aim of this study was to detect the associations among prolactin and lactoferrin genes and 305-day milk, fat and protein yields and age at first calving. Records of 180 milking cows (142 Friesian cows and 38 local cows) raised at three experimental herds (Elkarda, Sakha and Elserw) belonging to Animal Production Research Institute (APRI), Ministry of Agriculture, Egypt were used. **PCR-RFLP** method was used to get single nucleotide polymorphism (SNP). Three enzymes were used to restrict DNA PCR product, *Hinf1* restriction enzyme for lactoferrin gene and *Nael* and *SM/l* restriction enzymes for prolactin gene. A mixed model was used in analyzing each herd separately and this model including the fixed effects of year-season, parity and genotypes of lactoferrin and prolactin genes, the animal additive genetic effects and permanent environmental effects as random effects.

Results obtained in this study could be summarized as follows:

The additive genetic variance estimates at first test day for milk, fat, protein yields and age at first calving were 4.7 kg, 13.3 g, 5.3 g, respectively and 2.8 month increased until the fourth (7.6 kg, 38.7 g, 14.4 g and 5.5 months), decreased thereafter reaching the lowest value

at the tenth test day for milk yield and reaching the lowest value at the ninth test day for fat and protein yields. Age at first calving reached the lowest value at the sixth test day (1.5 month) then increased until the tenth test day (8 months). Heritability estimates at first test day were 0.12, 0.25, 0.25 and 0.05 for TDMY, TDFY, TDPY and AFC, respectively, and increased until the third test day for TDFY, TDPY and AFC, while the estimates for TDMY trait reached the highest value at the fourth test day (0.25, 0.32, 0, 32 and 0.08 for TDMY, TDFY, TDPY and AFC, respectively), then decreased at the tenth test day (0.14, 0.25, 0.25). But the estimate for AFC was reached the lowest value at sixth test day (0.04), and increased until the tenth test day to be 0.2.

The phenotypic trend for all traits decreased from year to year The genetic trends were slightly positive for all traits, indicating that the selection program performed correctly.

In the Friesian Elkarada herd, the values of observed (H_o) and expected (H_e) heterozygosity were 0.34 and 0.47 for lactoferrin gene restricted by *HinfI* enzyme, 0.36 and 0.44 for prolactin gene restricted by *Nael* enzyme, and 0.23 and 0.39 for prolactin gene restricted by *Sm/l* enzyme, respectively. In the Friesian Sakha herd, the values of H_o and H_e were 0.14 and 0.26 for lactoferrin gene restricted by *HinfI* enzyme and 0.21 and 0.44 for prolactin gene restricted by *Nael* enzyme and 0.23 and 0.39 for prolactin gene restricted by *Sm/l* enzyme, respectively, while in Elserw local Baladi herd, the values of 0.05 and 0.44 for lactoferrin gene restricted by *HinfI* enzyme, 0.18 and0.33 for prolactin gene restricted by *Nael* enzyme and 0.09 and 0.39 for prolactin gene restricted by *Sm/l* enzyme, respectively.

The values of PIC and F_{IS} in Elkarada Freisian herd were 0.36 and 0.29 for lactoferrin gene restricted by *HinfI* enzyme, 0.12 and 0.07 for prolactin gene restricted by *Nael* enzyme, and 0.82 and 0.23 for prolactin gene restricted by *Sm/l* enzyme, respectively. In Sakha Freisian herd, the values were 0.37 and 0.06 for lactoferrin gene restricted by *HinfT* enzyme, 0.20 and - 0.15 for prolactin gene restricted by *Nael* enzyme, and 0.62 and 0.36 for prolactin gene restricted by *Sm/l* enzyme, respectively, while the values in Elserw loca lBaladi herd were 0.27 and 0.37 for lactoferrin gene restricted by *HinfT* enzyme, 0.28 and - 0.17 for prolactin gene restricted by *Nael* enzyme, and 0.34 and 0.94 for prolactin gene restricted by *Sm/l* enzyme, respectively.

The differences in milk yield among the three genotypes of lactoferrin gene restricted by *HinfI* enzyme (AA, AB, and BB) were not significant in Elkarada Freisian herd, but in Sakha Freisian herd the differences among the three genotypes were significant and the AB genotype was the highest in milk, fat and protein yields. Also, the differences in age at first calving among the three genotypes were significant in Elkarada Frisian herd and AA genotype was the best one, but the differences in Sakha Friesian herd were not significant. In the local Baladi cattle, there were no significant differences among the three genotypes for milk traits but age at first calving differed significantly among the three genotypes.

The genotypes of prolactin gene restricted by *Nael* enzyme were CD and DD in Elkarada and Sakha Friesian herds, where the differences between the two genotypes for milk, fat yields and age at first calving were non-significant, but for protein yield was affected. In the local Baladi cattle, there were no significance differences between all genotypes for milk traits, but AFC was significantly affected.

Genotypes of prolactin gene restricted by Sm/l enzyme were GG, GT and TT where the differences in milk and age at first calving traits among these genotypes were not significant in Elkarada Friesian herd, but both fat and protein were affected. In Sakha Friesian herd, the differences in milk, fat and protein yields among the three genotypes were non-significant, but age at first calving trait was affected. In the local Baladi cattle, the differences among the three genotypes in all traits were non-significant.

التحليل الوراثي لإرتباط بعض الواسمات الوراثية بإنتاج اللبن في ماشية اللبن

رسالة مقدمة من

محمد حمادة محمد عبد الحميد

للحصول على

2.19