GENETIC STUDIES ON MALTING PRODUCTIVITY AND YIELD COMPONENTS OF SOME BARLEY GENOTYPES

By

ASMAA MOHAMMED ABD-ELGANI

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agronomy)

Department of Agronomy Faculty of Agriculture Cairo University EGYPT

2018

Format Reviewer

Vice Dean of Graduate Studies

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Heterosis	
a. Growth traits	
b. Yield and yield components	
2. Combining ability	
a. Growth traits	
b. Yield and yield components	
3. Malting quality	
4. Tagging barley verities	
5. Retrotranposble markers	
6. Inter-retrotransposon amplified polymorphism (IR	
MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Analysis of variance	
2. Mean performance	
3. Heterosis	
4. General combining ability	
5. Specific combining ability effects	
6. Molecular tagging of barley genotypes	
7. Detection of polymorphism based on retro-elem	ients
8. Genotypes identification by unique IRAP mark	ers
9. Cluster analysis as revealed by IRAP marker	
10. Genetic relationships among the five	barley
genotypes	
11 Malting quality	
a. Analysis of variance	
b. Mean performance	
c. Heterosis	
d. Combining ability	
12. Segregated (F ₂) generation	

a. Analysis of variance	
b. Mean performance	
c. Inbreeding depression	
SUMMARY	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Name, source and type of five barley Egyptian cultivars	29
2.	IRAP- primers code and sequences. Primers with * were used for final testing on barley cultivars	46
3.	Mean squares from ANOVA for genotypes and mean squares combining ability of several traits of F_1 diallel crosses of five barely genotype.	49
4.	The mean performance for traits of parents and F1 crosses of diallel among five barley genotypes.	50
5.	Estimates of heterosis (%) relative to mid parent (MP) heterosis for studied traits shown by F_1 diallel crosses among five barley genotypes.	53
6.	Estimates of general combining ability effects of barley parents for studied traits.	55
7.	Estimates of specific combining ability effects of F ₁ barley crosses for studied traits.	57
8.	Total number of bands, monomorphic, polymorphic bands, and percentage of polymorphism detected for 5 barley genotypes based on 15 primers.	70
9.	Positives and negative unique bands, their size and the genotype for each primer.	72
10.	Estimated genetic similarity among the five barley genotypes computed according to IRAP data.	75
11.	Mean squares from ANOVA for genotypes and mean squares combining ability of four malting traits of F_1 diallel crosses of five barely genotypes.	77
12.	The mean performance of parents and their F ₁ crosses of diallel among five barley genotypes.	78
13.	Estimates of heterosis (%) relative to mid parent (MP) heterosis for studied traits shown by F_1 diallel crosses among five barley genotypes.	81
14.	Estimates of general combining ability effects of barley parents for studied traits.	83
15.	Estimates of specific combining ability effects of F ₁ barley crosses for studied traits.	84
16.	Mean squares from ANOVA for genotypes and mean squares combining ability of several traits of F_1 diallel crosses of five barely genotype	86
17.	The mean performance for traits of parents and F_2 crosses of diallel among five barley genotypes	87
18.	Estimates of inbreeding depression (%) using F_1 and F_2 crosses data in a five parents half diallel cross of barley	90

LIST OF FIGURES

No.	Title	Page
1.	Standard curve of protein	38
2.	DNA banding patterns of the five barley genotypes tested with Primer IRAP 1368 and Primer IRAP 708. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1)	59
3.	DNA banding patterns of the five barley genotypes tested with Primer IRAP- 685and Primer IRAP -1372. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1).	60
4.	DNA banding patterns of the five barley genotypes tested with Primer IRAP- 628and Primer IRAP-941. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1)	62
5.	DNA banding patterns of the five barley genotypes tested with Primer IRAP - 818and Primer IRAP-517. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1).	63
6.	DNA banding patterns of the five barley genotypes tested with Primer IRAP-489and Primer IRAP-432. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1).	65
7.	DNA banding patterns of the five barley genotypes tested with Primer IRAP-847and Primer IRAP-832. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1).	66
8.	DNA banding patterns of the five barley genotypes tested with Primer IRAP-713and Primer IRAP-848. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1).	67
9.	DNA banding patterns of the five barley genotypes tested with Primer IRAP-680. M (DNA marker); barley genotypes are numbered (1 -5) as listed in Table (1)	68
10.	Dendrogarm constructed from the IRAP marker data to illustrate the relationship among the five barley genotypes	73

Name of Candidate: Asmaa Mohammed Abd El-GaniDegree: M.Sc.Title of Thesis: Genetic Studies on Malting Productivity and Yield
Components of Some Barley GenotypesYieldSupervisors: Dr. Fawzy Fathy Saad
Dr. Mohamed Abd El-Maboud Abd El-Shafi
Dr. Naglaa Abdel-Monem AshryYieldDepartment: AgronomyApproval: / / 2018

ABSTRACT

This study was carried out in 2011/2012, 2012/2013 and 2013/2014 seasons at the Agricultural Research center, Giza Governorate, Egypt. The aims were to identify superior parents and cross combinations from 5x5 half diallel cross system of barley parental genotypes and estimates of combining ability effects, heterosis and to determine the mode of inheritance for some agronomic and vield traits. In addition Inter Retrotransposon Amplified Polymorphism (IRAP) was adopted in this study to identify the studied genotypes which were originally selected from the malting barley collection. Results of analysis of variance for the studied traits of 15 genotypes (5 parents + 10 F_1 crosses) indicated that mean squares due to genotypes (G) was highly significant for all studied traits, except spike length, No. of grains/plant and grain yield/plant. Mean squares of genotypes were partitioned into parents (P), F₁ crosses (C) and P vs. C. Mean squares due to (P) and (C) were significant (P ≤ 0.05 or P ≤ 0.01) for all studied traits, except spike length, No of grains/plant and grain yield/plant. However, P vs. C was highly significant for days to heading, plant height, No. of spikes/plant and 1000 kernel weight, indicating significant heterosis for these traits. The ratio of GCA/SCA exceeded the unity, suggesting that additive was much larger and more important than non-additive gene effects for days to heading, No. of tillers/plant, spike length, No. of spikes/plant, No. of grains/plant, grain yield/plant, and biological yield/plant. Some crosses showed significant desirable heterosis for all studied traits. It is interesting to mention that two crosses showed a positive heterosis (Al-Ahram x Grace and Al-Ahram x Shakirs) for grain yield/plant and biological yield/plant. It is interesting to mention that the high positive heterosis in grain yield/plant was associated with high positive heterosis in days to heading, days to maturity, No. of tillers/plant, No. of spikes/plant and No. of grains/spike. The crosses showing the best heterosis could be recommended to improve the respective traits. For yield attributes the largest positive (favorable) GCA effects were exhibited by Marny for spike length, No. of grains/spike and 1000-kernel weight, Shakira for No. of spikes/plant and Sckarlet for 1000 kernel weight. It is interesting to note that the cross Al-Ahram X Shakira and Sckarlet x Marny showed superiority in SCA effects for most of yield attributes. Twenty four IRAP primers were tested for multi-locus fingerprints using retroelements based markers. Fifteen out of them were informative and revealed the genetic polymorphism among the 5 barley parental genotypes. IRAP primers produced 109 bands; 83 of these were polymorphic and 26 monomorphic. Primer IRAP-695 gave the highest number of bands (19) while primer IRAP-1372 gave the lowest number (2). Percentage of polymorphic bands ranged 0 and 100 %. The number of polymorphic amplicons per primer ranged from zero and 16 bands. The average number of amplicons per primer across the five genotypes was 7.26 and for polymorphic amplicons were 5.53. IRAP analysis succeeded to produce positive and negative unique markers that helped in genotype discrimination. The cluster analysis resolved the 5 barley genotypes into two main clusters, which is subsequently divided to other groups. The range of pair similarity coefficient among the five barley genotypes ranged from 27.9 to 77.5%. Shakira and Sckarlet were the most divergent genotypes. This could be attributed to fact that the two genotypes possess different ancestors. Genotypes Means of malting traits of 5 barley parental genotypes and their 21 diallel F_1 crosses, differed significantly in all malting traits. The low means for total protein, and the high means for α -amylase, β amylase starch% and hot water extract% were considered favorable. Only one cross Shakira x Marny showed positive heterosis (favorable) for three malting traits (α -amylase, starch% and hot water extract %).

Key words: Barley, Combining ability, Heterosis, Malting quality and Retrotransposons