KafrelsheikhUniversity Faculty of Agriculture Soil and Water Department

IRRIGATION INTERVALS BY IMPERICAL EQUATIONS USING LYSIMETERS

BY

FATMA HASSAN ELSAYED HASSAN

B. Sc.(poultry production), Fac.of Agric., KafrelsheikhUniversity,2010

A THESIS Submitted in Partial Fulfillment of TheRequirement For the Degree OF MASTER OF SCIENCE IN Agricultural Sciences (Soils)

2019

List of Contents

Subject	Page
1. Introduction	1
2. Review of literature	3
2.1 Irrigation intervals	3
2.2 Water requirements for sugar beet and maize crops	8
2.3 Actual evapotranspiration (ETc)	11
2.4 Effect of irrigation water intervals on yield and yield	
components of maize crop	12
2.5 Effect of irrigation water intervals on yield and yield	
components of sugar beet	14
2.6 Applied water use efficiency and crop water use	
efficiency	17
3. MATERIAL AND METHODS	24
3.1. Location of the studying area	24
3.2. Climatic condition	25
3.3. Water relations	25
3.4 .Agricultural practices	31

Subject

3.5. Yield and yield components of maize and sugar beet	
crops	32
3.6. Quality parameters	33
3.7. Statistical analysis	35
4. RESULTS AND DISCUSSION	36
4.1. Maize crop	36
4.1.1. Effect of irrigation intervals on seasonal amount	
of applied water	36
4.1.2. Effect of irrigation intervals on water consumptive	
use	36
4.1.3. Effect of irrigation intervals on irrigation water	
productivity and water productivity	39
4.1.4. Effect of irrigation intervals on yield and some	
yield attributes for maize crop productivity	42
4.2. Sugar beet	46
4.2.1. Effect of irrigation intervals on seasonal amount	
of applied water	46

ARABIC SUMMARY	
APPENDIXES	84
6. REFERENCES	72
5. SUMMARY AND CONCLUSION	63
components of sugar beet crop and its quality	52
4.2.4. Effect of irrigation intervals on yield, yield	
productivity and water productivity	50
4.2.3. Effect of irrigation intervals on irrigation water	
use	48
4.2.2. Effect of irrigation intervals on water consumptive	

LIST OF TABLES

Title

Page

	- "8'
Table (1): Mean values for (0-60 cm) depth of some	
properties of lysimeters' soil	25
Table (2): ET_0 values as calculated by Blaney - Criddle	
equation for the different irrigations	27
Table (3): ET_0 values as calculated by Radiation equation for	
the different irrigations.	28
Table (4): ET_0 values as calculated by Penman equation for	
the different irrigations	30
Table (5): Seasonal amount of applied water for maize crop	
in the two growing seasons (cm, m ³ /fed) as affect by	
irrigation intervals	37
Table (6): Seasonal amount of water consumptive use for	
maize crop in the two growing seasons (cm, m ³ /fed) as	
affected by irrigation intervals.	38
Table (7): Irrigation water Productivity and water	
productivity as affected by irrigation intervals	40
Table (8): Yield and some yield attributes for maize crop as	
affected by irrigation intervals. In first season (2016&	
2017)	44
Table (9): Seasonal amount of applied water for sugar beet	
crop in the two growing seasons (cm, m ³ /fed) as affect by	
irrigation intervals.	47

Table (10): Seasonal amount of water consumptive use for	
sugar crop in the two growing seasons (cm, m ³ /fed) as	
affected by irrigation intervals	49
Table (11): Irrigation water Productivity (IWP) and water	
productivity (WP) as affected by irrigation intervals	51
Table (12): Yield and some yield attributes for sugar beet	
crop as affected by irrigation intervals in first season	
(2016& 2017)	55
Table (13): Yield and some yield attributes for sugar beet	
crop as affected by irrigation intervals in second season	
(2017 2018)	56
Table (14): Sugar qualities of sugar beet crop as affected by	
irrigation treatments in first season (2016& 2017) and	
second season (2017& 2018)	59
Table (15) Sugar yields of sugar beet crop as affected by	
irrigation treatments in first season (2016& 2017) and	
second season (2017& 2018)	61

LIST OF FIGURES

Title	page
Fig (1): Amount of applied water (m ³ /fed) through first and second growing seasons and over all mean of maize crop as affected by irrigation treatments	38
Fig (2): Water consumptive use (m ³ /fed) through first and second growing seasons and over all mean of maize crop as affected by irrigation treatments	39
Fig (3): Water productivity (kgm ⁻³) for maize crop in the first and second seasons and over all mean as affected by irrigation treatments	41
Fig (4): Irrigation water productivity (kgm ⁻³) for maize crop in the first and second seasons and over all mean as affected by irrigation treatments	41
Fig (5): Plant height, Ear length and 100-grain weight of maize crop as affected by irrigation treatments in the first season.	45
Fig (6): Plant height, Ear length and 100-grain weight of maize crop as affected by irrigation treatments in the second season	45
Fig (7): Maize grain yield (kg/fed) as affected by irrigation treatments in the first and second seasonsFig (8): Amount of applied water (m³/fed) through first and	46
 second growing seasons and over all mean of sugar beet plant as affected by irrigation treatments Fig (9): Water consumptive use (m³/fed) through first and 	48
second growing seasons and over all mean of sugar beet plant as affected by irrigation treatmentsFig (10): Irrigation water productivity (kgm⁻³) for sugar beet	50
 crop in the first and second seasons and over all mean as affected by irrigation treatments Fig (11): Irrigation water productivity (kgm⁻³) for sugar beet crop in the first and second seasons and over all mean 	51
as affected by irrigation treatments	52
Fig (12): Root length (cm), root diameter (cm) and root	52 56

Title	page
Yield (ton/fed) for sugar beet as affected by irrigation	
treatments in the first season	
Fig (13): Root length (cm), root diameter (cm) and root	
Yield (ton/fed) for sugar beet as affected by irrigation	
treatments in the second season	57
Fig (14): Root and shoot weight (kg/plant) for sugar beet as	
affected by irrigation treatments in the first and second	
seasons	57
Fig (15): White sugar and sugar losses (%) for sugar beet as	
affected by irrigation treatments in the first and second	
seasons	61
Fig (16): Sugar yield (ton/fed), white sugar yield (ton/fed)	
and sugar losses yield (ton/fed) for sugar beet as	
affected by irrigation treatments in the first and second	
seasons	62

ABSTRACT

A lysimeters experiment was designed to study how to manage irrigation scheduling using different empirical equations compared to traditional irrigation method. Design of experiment was random block with three replicates. The experiment was repeated in two successive seasons 2016 and 2017 as well as 2017/ 2018 for Maize and sugar beet crops. Four irrigation treatments were used as T₁for traditional, T₂ by Belany - Criddle equation, T₃ by Radiation equation and T₄ by penman equation. All irrigation treatments were inserted by 70% of soil water depletion. The results showed that T_3 had the highest values of water productivity (0.89 kg/m^3) and productivity of irrigation (0.63 kg/m^3) as an overall average of the two seasons. Data revealed also that T_1 had the highest overall mean values applied water and water consumptive use (3862.47 m³/fed &2826.02 m³/fed). The results indicated that the highest values for grain yield was recorded by irrigation treatment T₃ with values of 2013.90 and 1925.53 kg/fed for maize crop, while sugar beet crop the results showed that T_3 had the highest values of water productivity (14.1 kg/m³) and productivity of irrigation (9.60 kg/m^3) as an overall average of the two seasons. Data revealed also that T_1 had the highest overall mean values applied water and water consumptive use (2678.38 m³/fed &1822.99 m³/fed). The results indicated that the highest values for root yield was recorded by irrigation treatment T₃ with values (25.17 and 24.81 ton/fed)