

Arbuscular Mycorrhizae as Biofertilizers for Wheat Crop

Thesis

Submitted to the Botany & Microbiology Department, Faculty of Science, Assiut University For Partial Fulfillment of M. Sc. In Botany (Microbiology)

Presented By

Samar Ahmed Khallaf Ali

B. Sc. (Special Botany), 2012 Faculty of Science, Assiut University, Egypt

Supervised by

Prof. Dr. M. B. Mazen

Professor of Microbiology, Botany & Microbiology Department, Faculty of Science, Assiut University

Prof. Dr. Osama N. Massoud

Professor of Microbiology, Microbiology Department, Soil, Water & Environment Research Institute, Agricultural Research Center, Giza, Egypt

Prof. Dr. A. M. Moharram Professor of Mycology, Botany & Microbiology Department, Faculty of Science, Assiut University

Dr. Nivien A. Nafady

Assistant Professor of Microbiology, Botany & Microbiology Department, Faculty of Science, Assiut University

Botany & Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt 2019

CONTENTS

	Subject	Page
LIST (OF TABLES	Ι
LIST (OF FIGURES	IV
1	INTRODUCTION	1
1.1.	Structural characteristics of arbuscular mycorrhizal roots and fungal life cycle	4
1.2.	Phylum Glomeromycota: taxonomy and classification	7
1.3.	Arbuscular mycorrhizal fungal diversity	8
1.4.	Mineral nutrition in AM symbiosis	12
1.5.	Studies concerned with ecology, diversity, and distribution of AMF in Egypt	20
1.6.	Application of AM fungi as biofertilizers	22
AIM O	F THE WORK	25
2	MATERIALS AND METHODS	26
2.1.	Study sites	26
2.2.	Sampling	26
2.3.	Soil analysis	27
2.3.1.	Physical analysis	27
2.3.2.	Chemical Analysis	28
2.4.	Spores of arbuscular mycorrhizal fungi (AMF)	28
2.4.1.	Isolation of spores from root-soil mixtures	28
2.4.2.	Determination of shapes, dimensions, colours and wall layers of mycorrhizal spores	29
2.4.3.	Structure of AMF communities	31
2.5.	Mycorrhizal root colonization	31
2.6.	Storage of root-soil mixtures, spores and mycorrhizae	33
2.7.	Pot experiment	33
2.7.1.	Plant material	33
2.7.2.	Soil	34
2.7.3.	Mycorrhizal inoculums	34
2.7.4.	Phosphorus fertilizers	35
2.7.5.	Experimental design	35
2.7.6.	Estimation of mycorrhizal colonization	36
2.7.7.	Isolation and identification of non-mycorrhizal fungi	36

	Subject	Page
2.7.8.	Determination of bacterial population	38
2.7.9.	Plant growth and yield measurements	38
2.7.10.	Estimation of photosynthetic pigments	39
2.7.11.	Plant tissue analysis (grains and straw)	40
2.7.12.	Statistical analysis	40
3	RESULTS	41
3.1.	Part I. Survay of Arbuscular Mycorrhizal Fungi in Assiut Governorate	41
3.1.1.	Physico-chemical analyses of soil samples	42
3.1.2.	Species richness (SR)	46
3.1.3.	The diversity of AMF in the cultivated habitat	50
3.1.3.1.	Agricultural Research Station	53
3.1.3.2.	Al-Besary	57
3.1.3.3.	Al-Hawatka	61
3.1.3.4.	Al- Ghoraieb	65
3.1.3.5.	Al-Shaghba	69
3.1.3.6.	Alwan	73
3.1.3.7.	Al -Wasta Island	77
3.1.3.8.	Arab El-Awamer	80
3.1.3.9.	Assuit University Farm	85
3.1.3.10.	Awlad Elyas	88
3.1.3.11.	Bani Adyat	92
3.1.3.12.	Bani Mohammed	95
3.1.3.13.	Bani Zied El-Akrad	98
3.1.3.14.	Koom Abo-Sheil	101
3.1.3.15.	Manqbad	106
3.2.	Part II. AMF as biofrtilizer: Pots experiment	127
3.2.1.	Soil properties	127
3.2.2.	Mycorrhizal inoculum and colonization	127
3.2.3.	Mycorrhizal wheat colonization	130
3.2.4.	Rhizosphere fungi	134
3.2.5.	Rhizoplane fungi	140
3.2.6.	Mesophilic bacteria	146
3.2.7.	Plant fresh and dry weights	148

Contents

	Subject	Page
3.2.8.	Wheat yields components	151
3.2.8.1.	Plant height	151
3.2.8.2.	Spike length	152
3.2.8.3.	Number of spikes and tillers / plant	152
3.2.8.4.	Number of grains per spike	153
3.2.8.5.	Biological yield per plant	153
3.2.8.6.	Grain index of 100 grains weight	154
3.2.9.	Photosynthetic pigments	156
3.2.10.	Impact on nutrient uptake	159
4	DISCUSSION	165
4.1.	The physico-chemical properties of soils	165
4.2.	AMF diversity and colonization	168
4.3	Species richness (SR)	172
4.4.	AMF as biofertilizer	176
4.4.1.	Mycorrhizal colonization	177
4.4.2.	Isolation of fungi from wheat roots	178
4.4.3.	Plant fresh and dry weights	179
4.4.4.	Wheat yield components	180
4.4.5.	Photosynthetic pigments	181
4.4.6.	Nutrient uptake (N, P and K)	182
SUMMA	RY AND RECOMMENDATION	184
REFERE	INCES	190
ARABIC	SUMMARY	1

LIST OF TABLES

No.	Title	Page
1	Characteristics of soils samples collected from 15 sites of cultivated wheat fields.	44
2	Species richness (SR) of arbscular mycorrhizal fungi.	47
3	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Agricultural Research Station.	54
4	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Al-Besary.	58
5	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Al-Hawatka.	62
6	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Al-Ghoraieb.	66
7	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Al-Shaghba.	70
8	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Alwan.	74
9	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Al-Wasta Island.	78
10	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Arab El-Awamer.	82
11	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Assiut University Farm.	86
12	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Awlad Elyas.	89
13	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Bani Adyat.	93
14	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Bani Mohammed.	96
15	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Bani Zied El-Akrad.	100
16	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Koom Abo-Sheil.	103

No.	Title	Page
17	Distribution, root colonization (%) and spore density (The number of spores in 100 g soil) of AMF in Manqbad.	107
18	Physico-chemical properties of experimental soil before planting.	128
19	Total counts (CFU per g dry soil), Percentage of total counts (Calculated per total counts), number of cases of isolation (Out of 10 treatments) and occurrence remarks of rhizosphere fungi isolated from 10 treatments of wheat plants grown under different levels of super phosphate (P ₁) and rock phosphate (P ₂) and inoculated with mycorrhizal fungi (M). Fungi isolated on Potatodextrose agar (PDA) medium at $28 \pm 1^{\circ}$ C at 45 days.	136
20	Total counts (CFU per g dry soil), Percentage of total counts (Calculated per total counts), number of cases of isolation (Out of 10 treatments) and occurrence remarks of rhizosphere fungi isolated from 10 treatments of wheat plants grown under different levels of super phosphate (P ₁) and rock phosphate (P ₂) and inoculated with mycorrhizal fungi (M). Fungi isolated on Potatodextrose agar (PDA) medium at $28 \pm 1^{\circ}$ C at Harvest stage.	138
21	Total counts (CFU per 25 fresh root segments), Percentage of total counts (Calculated per total counts), number of cases of isolation (Out of 10 treatments) and occurrence remarks of rhizoplane fungi isolated from wheat roots grown under different levels of super phosphate (P ₁) and rock phosphate (P ₂) and inoculated with mycorrhizal fungi (M). Fungi isolated on Potato dextrose agar (PDA) medium at $28 \pm 1^{\circ}$ C at 45 days.	142
22	Total counts (CFU per 25 fresh root segments), Percentage of total counts (Calculated per total counts), number of cases of isolation (Out of 10 treatments) and occurrence remarks of rhizoplane fungi isolated from wheat roots grown under different levels of super phosphate (P ₁) and rock phosphate (P ₂) and inoculated with mycorrhizal fungi (M). Fungi isolated on Potato dextrose agar (PDA) medium at $28 \pm 1^{\circ}$ C at Harvest stage.	144

No.	Title	Page
23	Fresh and dry weights (g/plant) of wheat plants at vegetative and harvest stages inoculated with (M) and without (NM) mycorrhizal fungi grown under different levels of super phosphate (P_1) and rock phosphate (P_2).	149
24	Yield parameters of wheat plants in response to mycorrhizal inoculation grown under different levels of P fertilizers.	155
25	Photosynthetic pigments (mg g ⁻¹ leaf FW) in leaves of wheat plants at 45 days grown under different levels of super phosphate (P_1) and rock phosphate (P_2) and inoculated with (M) and without (NM) mycorrhizal fungi (M).	158
26	Nutrient uptake (g plant ⁻¹) by grains and shoots of wheat plants grown under different levels of super phosphate (P_1) and rock phosphate (P_2) and inoculated with (M) and without (NM) mycorrhizal fungi (M).	161

LIST OF FIGURES

No.	Title	Page
1	Schematic drawing of an arbuscule, the symbiotic is surrounded by a plant-derived periarbuscular membrane (PAM) that is continuous with the plant plasma membrane and excludes the fungus from the plant cytoplasm. The apoplastic interface between the fungal plasma membrane and the plant-derived PAM is called the periarbuscular space (PAS).	6
2	Map of Assiut Governorate showing the sites (15) which soil samples were collected from wheat cultivated fields.	27
3	Mycorrhizal colonization of wheat plant in in Agricultural Research Station (A, B, F) vesicles (C, D) extraradical hyphae and (E) arbuscules and intraradical hyphae.	56
4	Mycorrhizal colonization of wheat plant in Al-Besary (A, B) arbuscules, (B) intraradical hyphae (D, E) vesicles and (F) extraradical hyphae.	60
5	Mycorrhizal colonization of wheat plant in Al-Hawatka (A, B, F) vesicles, (C) extraradical hyphae, (D) intraradical hyphae and (E) arbuscules.	64
6	Mycorrhizal colonization of wheat plant in Al- Ghoraieb (A) Coils, (B) intraradical hyphae, (C, D, F) vesicles (E) extraradical hyphae.	68
7	Mycorrhizal colonization of wheat plant in Al-Shaghba (A, F) extraradical hyphae, (B, C) vesicles (D, E) arbuscules.	72
8	Mycorrhizal colonization of wheat plant in Alwan (A) vesicles and intraradical hyphae, (B, E, F) Coils (C) extraradical hyphae and (D) arbuscules.	76
9	Mycorrhizal colonization of wheat plant in Al -Wasta Island (A) arbuscules, (B, C, F) vesicles, (D) intraradical hyphae and (E) extraradical hyphae.	79
10	Mycorrhizal colonization of wheat plant in Arab El-Awamer (A, B) vesicles, (C) extraradical hyphae, (D) intraradical hyphae and (E, F) arbuscules.	84

No.	Title	Page
11	Mycorrhizal colonization of wheat plant in Assiut University Farm (A, B) vesicles, (C) extraradical hyphae, (D) Coils, (E) intraradical hyphae and (F) arbuscules.	87
12	Mycorrhizal colonization of wheat plant in Awlad Elyas (A, B) vesicles, (C, F) intraradical hyphae, (D) arbuscules and (E) coils.	91
13	Mycorrhizal colonization of wheat plant in Bani Adyat (A, B, E, F) vesicles, (C) extraradical hyphae, (D) intraradical hyphae and arbuscules.	94
14	Mycorrhizal colonization of wheat plant in Bani Mohammed (A, F) vesicles, (B, C) arbuscules and (D, E) intraradical hyphae.	97
15	Mycorrhizal colonization of wheat plant in Bani Zied El-Akrad (A, E) vesicles, (B, F) arbuscules and (C, D) intraradical hyphae.	100
16	Mycorrhizal colonization of wheat plant in Koom Abo-Sheil (A, B, E, F) vesicles and intraradical hyphae (C) Coils and (D) arbuscules.	105
17	Mycorrhizal colonization of wheat plant in Manqbad (A, B, E) vesicles, (C) extraradical hyphae, (D) arbuscules and (F) intraradical hyphae.	108
18	(A, B, C & D) <i>Acaulospora bireticulata</i> F.M. Rothwell & Trappe (E & F) <i>Acaulospora capsicula</i> Blaszk.	110
19	(A&B) Acaulospora cavernata Blaszk. (C&D) Acaulospora gedanensis Blaszk. (E&F) Acaulospora koskei Blaszk.	111
20	(A&B) Acaulospora lacunosa J. B. Morton (C, D, E&F) Acaulospora laevis Gerd. & Trappe	112
21	(A, B, C&D) <i>Acaulospora mellea</i> Spain & N.C. Schenck (E&F) <i>Acaulospora rehmii</i> Sieverd. & S. Toro	113
22	(A&B) Acaulospora thomii Blaszk. (C) Ambispora fennica C. Walker, Vestberg & Schuessler (D) Claroideoglomus claroideum N.C. Schenck & G.S. Sm. (E&F) Claroideoglomus drummondii Blaszk. & C. Renker	114
23	 (A) Claroideoglomus etunicatum W.N. Becker & Gerd. (B) Claroideoglomus lamellosum Dalpé, Koske & Tews (C, D, E&F) Claroideoglomus walkeri Blaszk. & C. Renker. 	115

No.	Title	Page
24	 (A) Corymbiglomus corymbiforme Blaszk. (B) Corymbiglomus tortuosum N.C. Schenck & G.S. Sm. (C&D) Diversispora aurantia Blaszk. V. Blanke, C. Renker & F. Buscot (E) Diversispora eburnea L.J. Kenn., J.C. Stutz & J.B. Morton (F) Diversispora gibbosa Blaszk. 	116
25	(A, B, C&D) <i>Diversispora trimurales</i> Koske & Halvorson (E&F) <i>Dominikia aurea</i> Oehl & Sieverd.	117
26	(A&B) <i>Funneliformis caledonium</i> (Nicol. & Gerd.) Trappe & Gerd. (C, D, E&F) <i>Funneliformis coronatum</i>	118
27	 (A&B) Funneliformis geosporum (Nicol. & Gerd.) C. Walker (C&D) Funneliformis mosseae (Nicol. & Gerd.) Gerd. & Trappe (E&F) Funneliformis verruculosum Blaszk. 	119
28	(A, B, C&D) <i>Gigaspora gigantea</i> (Nicol. & Gerd.) Gerd. & Trappe (E&F) <i>Gigaspora margarita</i> W.N. Becker & I.R. Hall	120
29	(A&B) <i>Glomus caesaris</i> Sieverd. & Oehl (C) <i>Glomus deserticola</i> Trappe et al. (D) <i>Glomus glomerulatum</i> Sieverd. (E&F) <i>Glomus</i> <i>macrocarpum</i> Tul. & C. Tul.	121
30	(A&B) <i>Glomus microcarpum</i> Tul. & C. Tul. (C) <i>Glomus spinuliferum</i> Sieverd. & Oehl (D) <i>Pacispora boliviana</i> Sieverd. & Oehl (E&F) <i>Pacispora franciscana</i> Sieverd. & Oehl	122
31	 (A) Pacispora robiginia Sieverd. & Oehl (B) Pacispora scintillans Sieverd. & Oehl ex C. Walker, Vestberg & Schuessler (C) Paraglomus laccatum (Blaszk.) C. Renker Blaszk. & F. Buscot (D) Racocetra persica (Koske & C. Walker) C. Walker & F.E. Sanders (E&F) Racocetra fulgida Koske & C. Walker. 	123
32	(A, B, C&D) <i>Rhizophagus aggregatus</i> N.C. Schenck & G.S. Sm. emend. Koske (E) <i>Rhizophagus antarcticus</i> Sieverd., G.A. Silva & Oehl (F) <i>Rhizophagus clarus</i> Nicol. & Smith Sieverd. & Oehl	124
33	(A&B) <i>Rhizophagus fasciculatus</i> (Thaxt.) Gerd. & Trappe emend. C. Walker & Koske (C, D, E&F) <i>Scutellospora armeniaca</i> Blaszk.	125
34	 (A) Scutellospora calospora (Nicol. & Gerd.) C. Walker & F.E. Sanders (B) Scutellospora pellucida (Nicol. & N.C. Schenck) C. Walker & F.E. Sanders (C, D, E&F) Septoglomus constrictum Trappe. 	126

No.	Title	Page
35	 Spores of (A) Scutellospora armeniaca Blaszk.; (B) Funneliformis coronatum (Giovann.) C. Walker & A. Schüßler comb. nov; (C) Acaulospora bireticulata F.M. Rothwell & Trappe; (D) Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe; (E) Glomus spinuliferum Sieverd. & Oehl, in Oehl, Wiemken & Sieverding; (F) Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler comb. nov. 	129
36	Effect of different levels of superphosphate (P_1) and rock phosphate (P_2) fertilizers on the percentage of wheat roots colonization at (A) vegetative stage, (B) after 75 days and (C) harvest stage.	131
37	(A-E) Root colonization patterns of 45-old (at vegetative stage) wheat plants inoculated with mycorrhizal fungi.	133
38	(A-B) Total counts of bacteria (cfu/g) in soil wheat plants at (A) vegetative stage and (B) Harvest stage. Plants grown under different levels of superphosphate (P ₁) and rock phosphate (P ₂) and inoculated with (M) /without (NM) mycorrhizal fungi.	147
39	(A-D) Fresh and dry weights (g/plant) of roots and shoots of wheat plants at harvest stage grown under different levels of superphosphate (P_1) and rock phosphate (P_2) and inoculated with mycorrhizal fungi (M).	150
40	Total pigments (mg g ⁻¹ leaf FW) in leaves of wheat plants at 45 days grown under different levels of super phosphate (P_1) and rock phosphate (P_2) and inoculated with (M) and without (NM) mycorrhizal	157
41	(A-F) Nutrients uptake NPK (g/plant) in grains and shoots wheat plants at harvest stage grown under different levels of superphosphate (P ₁) and rock phosphate (P ₂) and inoculated with (M) /without (NM) mycorrhizal fungi.	162

5. Summary

This investigation was focused on two different parts including biodiversity of arbuscular mycorrhizal fungi in different wheat fields at Assiut Governorate. The second part focuses on some physiological studies and application of arbuscular mycorrhizal fungi as biofertilizers for wheat plants as well as treatment with different concentrations (25, 50 and 75%) of super phosphate and rock phosphate from recommended rate (200 kg/fed).

Part I:

1. Soil texture of cultivated soils varied from loamy clay, sandy clay and loamy 73.33%, 13.33% and 13.33% of soil samples, respectively.

2. Soils of the fifteen sites were slightly alkaline with pH 7.82 to 8.01. The electrical conductivity values (EC) differed from 0.80 to 2.25 dS m⁻¹ which could be considered non-saline soil. On the other hand, the organic matter content (OM) in cultivated soils fluctuated between 0.82 - 3.9 %.

3. The value of total nitrogen content in fifteen sites fluctuated between 50 and 171 mg/kg soil, total phosphorus content ranged from 0.92 to 5.74 mg/kg soil and total potassium content ranged from 49.2 to 250.2 mg/kg soil.

4. Analysis of anions and cations composition showed that Ca^{++} value fluctuated between 1.0-7.4 mg/L, while Mg⁺⁺ value ranged from 0.2-3.0 mg/L g. The value of Na⁺ markedly varied from 3.1 to 10.7 mg/L. Chloride (Cl⁻) content ranged from 4.6-14.6 mg/L.

Iron contents varied from 9.43 to 25.52 mg/kg soil. The mean value for Zn ranged between 0.67 and 6.54 mg/kg soil.

5. A total of 83 morphotypes of AMF were recovered from 45 soil samples obtained from within 15 sites of wheat fields in Assiut Governorate during the present investigation, of which 51 species of them (61%) were identified to known species, *Glomus* was the dominant genus, followed by *Acaulospora* belonging to the families Claroideoglomeraceae, Glomeraceae, Acaulosporaceae, Diversisporaceae, Gigasporaceae, Pacisporaceae, Ambisporaceae and Paraglomeraceae.

6. With regard to species spectrum, twenty-one were members of *Acaulospora*, twenty-four belong to *Glomus*, five were attributed to each of *Claroideoglomus*, *Funneliformis* and *Scutellospora*, four in each of *Rhizophagus*, *Diversispora*, and *Pacispora*, three in *Gigaspora*, two in each of *Corymbiglomus* and *Racocetra* and one in each of *Dominikia*, *Ambispora* and *Paraglomus*.

7. Twenty-two species would be considered as new records to the AMF in Assiut Governorate, these include: Acaulospora cavernata, A. gedanensis, A. lacunosa, A. mellea, Ambispora fennica, Claroideoglomus claroideum, С. drummondii, С. walkeri. Corymbiglomus corymbiforme, C. tortuosum, Diversispora aurantia, D. eburnea, D. gibbosa, Scutellospora pellucida, Dominikia aurea, Glomus deserticola, G. macrocarpum, G. microcarpum, G. spinuliferum, G. glomerulatum, *Pacispora* scintillans and Paraglomus laccatum.

8. The root colonization percentage in cultivated wheat fields ranged between 50 and 100%, of which the highest value in Agricultural Research Station, Al-Wasta Island and Bani Adyat and mycorrhizas were represented by all typical structures *viz*. arbuscules, vesicles and hyphae.

9. Maximum mean spore density recorded was in El-Ghoraieb (276 spores/100 g soil), followed by Al-Besary (273 spores/100 g soil). Minimum spore density was observed in Manqbad (59 spores/100 g soil).

10. Number of taxa was diverse in which Koom Abo-Sheil showed 24 taxa while Agricultural Research Station came second by showing 23 taxa. The least number of taxa were recorded in Manqabad (twelve taxa).

11. The species richness ranged from 1 to 31, of which *Acaulospora koskei* came first followed by *Funneliformis mosseae* (27).

Part II:

1. Eleven rhizosphere non-mycorrhizal fungal species belonging to five genera were isolated during the present investigation from 10 treatments of wheat plants grown under different levels of super phosphate (P₁) and rock phosphate (P₂) and inoculated with mycorrhizal fungi (M) at 45 days and harvest stage at 28 ± 1 °C. *Aspergillus* sp. was the most abundant genera in all treatments then *Penicillium* sp., *Rhizopus* sp., *Fusarium* sp. and *Botrytrichum* sp.

2. Twenty rhizoplane fungal species belonging to seven genera were isolated during the present investigation from 10 treatments of wheat roots grown under different levels of super phosphate (P₁) and rock phosphate (P₂) and inoculated with mycorrhizal fungi (M) at 45 days and harvest stage at 28 ± 1 °C. *Aspergillus* sp. was the most abundant genera in all treatments then *Penicillium sp.*, *Fusarium* sp., *Alternaria* sp. and *Cochliobolus* sp.

3. The mycorrhizal colonization of wheat plants increased as P level decreased and the highest value of infection was recorded at low and moderate levels (25, 50%) of super phosphate and rock phosphate.

4. After 45 days, a reduction in fresh and dry weights of shoots and roots were observed in non-mycorrhizal wheat plants treated with super phosphate and rock phosphate.

5. At harvest stage, the fresh and dry weights of shoots and roots showed an increase in mycorrhizal wheat plants treated with 25% super phosphate, and 50% rock phosphate.

6. The various yield components of wheat plants were significantly reduced as P level raised in the soil. Inoculation of wheat plants with AMF significantly (p<0.05) increased yield components especially at low concentration of rock phosphate (25%).

7. In mycorrhizal wheat plants the highest significant (P<0.05) value of total pigments was recorded. The total pigments of mycorrhizal wheat plants treated with superphosphate at all levels and rock phosphate at 50% and 75% levels, were significantly higher than those of their respective control level of non-mycorrhizal counterparts.

8. The total N-content, the obtained data showed significant increasing in N-uptake of both grains and shoots compared to control treatment. The obtained results indicated that using mycorrhizal fungi combined with low concentration of rock phosphate (25%) gave the highest value of N in grains.

9. The data revealed that significantly increased in P content of both grains and shoots in mycorrhizal wheat plants under high level of superphosphate (75%) compared to other treatments and control. P content in shoots was non-significantly between treatments.

10. The highest value of potassium content in grains and shoots was in mycorrhizal plants under low level of rock phosphate (25%). The lowest value shown of potassium content in grains and shoots was recorded in non-mycorrhizal wheat plants with 100% rock phosphate compared to other treatments and control plants.

11. In conclusion, the present study suggested that: the combined application of AMF (*A. bireticulata, F. coronatum, F. mosseae, G. spinuliferum, G. gigantea* and *S. armeniaca*) and low levels of phosphorus fertilizers of wheat plants is more effective than single treatment where, there was a significant improvement in plant growth, biomass and yield components.

12. The results also indicated that use high P concentration reduce the beneficial mycorrhizal effect on plant growth, yield production and nutrient uptake. Wherefore, treatment with high levels of P fertilizers is not recommended because they reduce the beneficial mycorrhizal of plant.

13. The results showed that AMF increased the nutrient uptake of N, P and K in grains and shoots with low levels fertilizers. With the continued rise in phosphorus fertilizer levels, the nutrient uptake of these elements was decreased compared to non- mycorrhizal and control treatments.

14. It is important that phosphate management balances the goal of providing sufficient phosphate to the crop to optimize crops yield.