

Tanta University Faculty of Agriculture Department of Agronomy

Relationship between dry matter in different wheat plant parts and grain yield under water stress conditions

BY

Doha Mamdouh Kandeel

B.Sc. Agricultural Sciences, Fac. of Agric., Tanta Univ., 2008 M.Sc. Fac. of Agric., Tanta Univ., 2014

> Thesis Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> > IN

Agricultural sciences (Agronomy)

Department of Agronomy Faculty of Agriculture Tanta University

> 1440 A.H 2019 A.D

List of Content

9

Contents Page	
List of contents	IV
List of tables	V
Introduction	1
Review of literature	3
Materials and methods	45
Results and discussion	56
Summary	111
References	115
الملخص العربي	

List of Tables

M

Т	Title	Pages
ables		No.
No.		
Table (1)	Mechanical analysis of the experimental soil.	45
Table (2)	Some soil-water constant properties and bulk density of the	46
	experimental soil sites in 2015/16 and 2016/17 seasons.	
Table (3)	Meteorological records of the Central Laboratory for	46
	Agriculture Climate (2015/16-2016/17)	
Table (4)	The experimental treatments.	47
Table (5)	Total dry matter and Crop growth rate as affected by	61
	irrigation regime treatments and tested wheat cultivars	
	during 2015/2016 and 2016/2017 seasons	
Table (6)	Total dry matter (TDM) and Crop growth rate (CGR) as	62
	affected by the interaction between irrigation regime	
	treatments and tested wheat cultivars during 2015/2016 and	
	2016/2017 seasons	
Table (7)	Contibution of dry matter (DM) reserves in grain yield as	70
	affected by irrigation regime treatments and tested wheat	
	cultivars during 2015/2016 and 2016/2017 seasons	
Table (8)	Contibution of dry matter(DM) reserves in grain yield as	71
	affected by the interaction between irrigation regime	
	treatments and tested wheat cultivars during 2015/2016 and	
	2016/2017 seasons	
Table (9)	Chlorophyll a & b and total chlorophyll (chl a+ chl b)	76
	content as affected by irrigation regime treatments and the	
	four tested wheat cultivars during 2015/2016 and 2016/2017	
	seasons	
Table (10)	Chlorophyll a & b and total chlorophyll contents (chl a+chl	77
	b) content as affected by the interaction between irrigation	
	regime and tested wheat cultivars during 2015/2016 and	
	2016/2017 seasons	
Table (11)	Cell membrane stability and proline as affected by irrigation	82
	regime and tested wheat cultivars during 2015/2016 and	

A

	2016/2017 seasons	
		0.2
Table (12)	Cell membrane stability (CMS) and proline content as	83
	affected by the interaction between Irrigation between	
	irrigation regime treatments and tested cultivars during	
	2015/2016 and 2016/2017 seasons	
Table (13)	Relative water content (RWC),Sesonal water consumptive	90
	use (CU) and water use efficiency (WUE) as affected by	
	irrigation regime treatment and tested wheat cultivars during	
	2015/2016 and 2016/2017 seasons	
Table (14)	Relative water content, CU and water use efficiency as	91
	affected by the interaction between Irrigation regiem and	
	grown cultivars through 2015/2016 and 2016/2017 seasons	
Table (15)	Yield and yield components as affected by irrigation regime	106
	and grown cultivars through 2015/2016 and 2016/2017	
	seasons	
Table (16)	Yield and yield components as affected by the interaction	107
	between Irrigation regime and grown cultivars through	
	2015/2016 and 2016/2017 seasons	
Table (17)	Relative yield reduction (YR), Stressed days (SD), Drought	109
	sensitivity (YR/SD) and susceptibly index as affected by	
	irrigation regime and grown cultivars through 2015/2016	
	and 2016/2017 seasons	
Table (18)	Relative yield reduction (YR), Stressed days (SD), Drought	110
	sensitivity (YR/SD) and susceptibly index as affected by the	
	interaction between Irrigation regime and grown cultivars	
	through 2015/2016 and 2016/2017 seasons	
	anough 2010, 2010 and 2010, 2017 Sousons	

Abstract

Two field experiments were conducted at El-Gemmeiza Agric. Res. Station, ARC during 2015/16 and 2016/17 seasons to study the response of four tested wheat cultivars (Gemmeiza 12, Misr 1, Giza 168 and Sids 13) under four irrigation treatments (normal irrigation as control, withholding irrigation at tillering stage, withholding irrigation at heading stage and withholding irrigation at grain filling stage) in relation to vegetative and physiological growth traits, water relation traits, and yield and yield components.

The obtained results could be summarized as follows. Receiving wheat plants under normal irrigation, followed by withholding irrigation at grain filling stage resulted in increasing vegetative and physiological growth traits, water relation traits, yield and yield components in both seasons of this study. Withholding irrigation at tillering stage gave the lowest values of all the studied traits in both seasons.

Results detected significant varietal differences among the four tested wheat cultivars, whereas wheat Gemmeiza 12 cultivar surpassed significantly the other three tested wheat cultivars (Misr 1, Giza 168 and Sids 12) for all the studied

I

Abstract

traits in both seasons. Meanwhile, Sids 13 cultivar gave the lowest values of all the studied traits in both seasons.

It is concluded that, Gemmeiza 12 cultivar with receiving its plants with full water irrigation resulted in increases growth analysis and growth attributes, saving water irrigation as well as increase yield and yield components of wheat crop for the abovementioned cultivar under such conditions.