

Suez Canal University Faculty of Veterinary Medicine Department of Avian and Rabbit Medicine

Studies on chicken infectious anemia virus infection: an immunosuppressive disease of chickens

Thesis Presented By

Doaa Selim Ahmed Elhalous

(B.V.Sc. 2006) - Suez Canal University

(M.V.Sc. 2011) Avian and Rabbit Diseases - Suez Canal University

For the degree of

Doctor of Philosophy (Ph.D.) in Veterinary Medical Sciences Avian and Rabbit Diseases

(2019)

Thesis under supervision of

Prof. Dr./ Hanan Mohamed Fathy Abdien

Professor and Head of Avian and Rabbit Medicine Faculty of Veterinary Medicine Suez Canal University, Ismailia

Prof. Dr./ Dalia Mansour Hamed

Professor of Avian and Rabbit Diseases Dean of Faculty of Veterinary Medicine Suez Canal University, Ismailia

Assist. Prof./ Wael Mohamed kamel El-Feil

Assistance Professor of Avian and Rabbit Diseases. Faculty of Veterinary Medicine Suez Canal University, Ismailia

Prof. Dr/Abdullah Abdul-Zaher Selim

Chief Researcher on Poultry Diseases National Laboratory for Veterinary Quality Control on poultry production, Animal Health Research Institute.

Name	Doaa Selim Ahmed Elhalous
Title	Studies on chicken infectious anemia virus infection: an immunosuppressive disease of chickens.
Department	Avian and Rabbit Medicine
Faculty	Veterinary Medicine
Location	Suez Canal University
Degree	Doctor of Philosophy (Ph.D.) in Veterinary Medical Sciences
Date	8 /10/2019
Language	English
	Prof. Dr. /Hanan Mohamed Fathy Abdien
Supervision	Prof. Dr. / Dalia Mansour Hamed
committee	Assist. prof./ Wael Mohamed kamel El-Feil
	Prof. Dr./Abdullah Abdul-Zaher Mohammad Selim

Abstract

English Abstract

In last year's, the problems increase in poultry industry in Egypt due to spread of immunosuppressive diseases. The present study aimed to detect CIAV circulating in backyard and commercial flocks in Ismailia and Sharkia. The examined flocks showed uneven growth, anemic lesions, atrophied thymus, pale liver and pale bone, hemorrhages in muscles. Each flock thymus, liver, spleen and bone marrow polled, then directly examined for CIAV DNA by polymerase chain reaction by specific primers. PCR results were 52% and 50% in backyard and commercial flocks respectively. Molecular studied of nucleotides, VP1, VP2 and VP3 proteins showed some mutational changes in compered with reference strain. Changes detected in VP1 H 22 Q, VP2 A 153 V, T 180 S and VP3 R 118 C indicated low affinity of the obtained isolates to grow in cell line. Histopathological examined showed sever lymphocytic depletion in lymphoid organs, resulting in loss of normal architecture with present apoptic cells and eosinophilic intranuclear inclusion bodies.

List of Contents

	Subject	page
I-	Introduction	1
II-	Review of literature	5
III-	Material and methods	49
IV-	Results	62
V -	Discussion	124
VI-	Summary and conclusion	139
VII-	References	144
VIII	- Arabic summary	i

List of tables

Tables	Name	Page
Table 1	Data of examined commercial broiler flocks, collected during 2016-2017, from Ismailia and Sharkia	50
Table 2	Primers data used in RT-PCR reactions	51
Table 3	RT-PCR Reaction Master Mix volumes for one reaction	56
Table 4	Thermocycler conditions of primers used in RT-PCR reaction	56
Table 5	Master mix contents used for Big Dye Terminator V3.1 cycle	58
Table 6	CIAV reference, worldwide and vaccinal strains used in sequence analysis and phylogeny	60
Table 7	CIAV Egyptian strains used in sequence analysis and phylogeny	61
Table 8	Clinical signs, postmortem lesions and CIAV RT-PCR results of examined commercial broiler flocks from Ismailia and Sharkia during 2016-2017.	66-70
Table 9	Clinical signs, postmortem lesions and CIAV RT-PCR results of examined backyard flocks from Ismailia during 2016-2017.	70
Table 10	RT-PCR results using primer-1 and primer-2 only in 15 tissue samples.	72
Table 11	The occurrence of CIAV in examined flocks in relation to age	75
Table 12	The occurrence of CIAV in examined flocks in relation to breed	76
Table 13	The occurrence of CIAV in examined flocks in relation to locality	77
Table 14	Data of the 6 chosen CIAV field isolates for sequencing	78
Table 15	Nucleotides changes between 6 chosen isolates in compare with reference strain and its effect on VP1, VP2 and VP3	88
Table 16	Nucleotides Changes in the 6 field isolates and its effect on phylogenic tree classification	93

List of tables

Table 17	Changes in amino acids of VP1, VP2 and VP3 proteins and its effect on phylogenic trees classification	97
Table 18	Nucleotides (420 bp) identity of the 6 chosen isolates in comparison with worldwide and vaccinal strains obtained from GeneBank	98
Table 19	VP1 amino acids identity of the 6 chosen isolates in comparison with worldwide and vaccinal strains obtained from GeneBank	99
Table 20	VP2 amino acids identity of the 6 chosen isolates in comparison with worldwide and vaccinal strains obtained from GeneBank	100
Table 21	VP3 amino acids identity of the 6 chosen isolates in comparison with worldwide and vaccinal strains obtained from GeneBank	101
Table 22	Nucleotides Changes with highlighting silent mutants affect 420 bp phylogenic tree in compared with Egyptian and vaccinal strains	111
Table 23	Amino acids substitution in the examined isolates in compared Egyptian and vaccinal strains and its effect on phylogenic tree	115
Table 24	Nucleotides (240 bp) identity of the 6 chosen isolates in comparison with Egyptian and vaccinal strains obtained from GeneBank	116
Table 25	VP1 amino acids identity of the 6 chosen isolates in comparison with Egyptian and vaccinal strains obtained from GeneBank	117
Table 26	VP2 amino acids identity of the 6 chosen isolates in comparison with Egyptian and vaccinal strains obtained from GeneBank	118
Table 27	VP3 amino acids identity of the 6 chosen isolates in comparison with Egyptian and vaccinal strains obtained from GeneBank	119

List of figures

Figures	Name	Page
Figure 1	CIAV proteins structure and most important sites	42
Figure 2	Circular CIAV proteins structure	42
Figure 3	The details and positions of primer-1 and primer-2 used in RT-PCR reaction.	52
Figure 4:14	Clinical signs and post-mortem lesions of examined flocks	63-65
Figure 15	Agarose gel electrophoresis pattern of RT-PCR for detection of CIAV using two pairs of primers	71
Figure 16	Agarose gel electrophoresis pattern of RT-PCR for detection of CIAV in commercial broiler flocks by using primer-2	73
Figure 17	Agarose gel electrophoresis pattern of RT-PCR for detection of CIAV in backyard flocks by using primer-2	74
Figure 18	The occurrence of CIAV in commercial broiler chickens in relation to age	75
Figure 19	The occurrence of CIAV in backyard chicken flocks	75
Figure 20	The occurrence of CIAV in commercial broiler and backyard chicken flocks in relation to breeds	76
Figure 21	The occurrence of CIAV in examined flocks in relation to locality	77
Figure 22	The occurrence of CIAV in Ismailia commercial broiler and backyard chicken flocks	77
Figure 23	The partial sequence alignment of 6 examined isolates in compared with primer-1 reverse complement at position 1047:1066 bp	79
Figure 24	Nucleotides sequence alignment of the 6 CIAV isolates in comparison to reference, worldwide, and vaccinal strains obtained from gene bank	83:84
Figure 25	VP1 amino acids sequence alignment of the 6 CIAV isolates in comparison to reference, worldwide, and vaccinal strains obtained from gene bank	85
Figure 26	VP2 amino acids sequence alignment of the 6 CIAV isolates in comparison to reference, worldwide, and vaccinal strains obtained from gene bank	86
Figure 27	VP3 amino acids sequence alignment of the 6 CIAV isolates	87

	in comparison to reference, worldwide, and vaccinal strains	
	obtained from gene bank	
Figure 28	Phylogenetic tree of partial CIAV nucleotides sequence (420 bp) of 6 field isolates in compared with reference, worldwide and vaccinal strains	91
Figure 29	Phylogenetic tree of partial CIAV nucleotides sequence (420 bp) of 6 field isolates in compared with reference, worldwide and vaccinal strains	92
Figure 30	Phylogenetic tree of partial CIAV VP1 aa sequences (73 aa) of 6 field isolates in compared with reference, worldwide and vaccinal strains	94
Figure 31	Phylogenetic tree of partial CIAV VP2 as sequences (124 aa) of 6 field isolates in compared with reference, worldwide and vaccinal strains	95
Figure 32	Phylogenetic tree of partial CIAV VP3 aa sequences (65 aa) of 6 field isolates in compared with reference, worldwide and vaccinal strains	96
Figure 33	Nucleotides sequence alignment of the 6 CIAV isolates in comparison to reference, Egyptian, and vaccinal strains obtained from gene bank	103:105
Figure 34	VP1 aa sequence alignment of the 6 CIAV isolates in comparison to reference, Egyptian, and vaccinal strains obtained from gene bank	106
Figure 35	VP2 aa sequence alignment of the 6 CIAV isolates in comparison to reference, Egyptian, and vaccinal strains obtained from gene bank	107
Figure 36	VP3 aa sequence alignment of the 6 CIAV isolates in comparison to reference, Egyptian, and vaccinal strains obtained from gene bank	108
Figure 37	Phylogenetic tree of partial CIAV nucleotides sequences (420 bp) of 6 field isolates in compared with reference, Egyptian and vaccinal strains	109
Figure 38	Phylogenetic tree of partial CIAV VP1 nucleotides sequences (221 bp) of 6 field isolates in compared with reference, Egyptian and vaccinal strains	110
Figure 39	Phylogenetic tree of partial CIAV VP1 aa sequences (73 aa) of 6 field isolates in compared with reference, Egyptian and vaccinal strains	112

List of figures

	Phylogenetic tree of partial CIAV VP2 aa sequences (124 aa)	
Figure 40	of 6 field isolates in compared with reference, Egyptian and	113
	vaccinal strains	
	Phylogenetic tree of partial CIAV VP3 aa sequences (65 aa)	
Figure 41	of 6 field isolates in compared with reference, Egyptian and	114
	vaccinal strains	
Figure	Histopathological changes in liver, thymus and spleen of	101.102
42:44	chicken infected by CIAV	121,123