

MANSOURA UNIVERSITY FACULTY OF SCIENCE BOTANY DEPARTMENT

Studies on the effect of using some nanomaterials in controlling stored grains pests

A Thesis

Submitted in partial fulfillment of the requirements for the award of the Master degree of Science in Botany (Plant Physiology)

By

Rehab Ibrahim Mohammed Gad

B.Sc. Botany, 2003 Botany Department Faculty of Science (Girls)

Al-Azhar University

Cairo

Supervisors

Prof. Dr. Samia A. Haroun

Prof. Dr. Mahmoud E. El-Naggar

Prof. of Plant Physiology Botany Department Faculty of Science - Mansoura University Prof. of Acarology Plant Protection Research Institute Agricultural Research Center

Dr.Doaa Mohamed Zein El-Abdein

Boraei Assistant prof. Stored Products and Cereals Research Department Plant Protection Research Institute Agricultural Research Center

List of Tables	I
List of Figures	IV
List of abbreviations	VII
1.INTRODUCTION	1
Aim of the work	5
2. REVIEW OF LITERATURE	6
3. MATERIALS AND METHODS	
Materials	
Time course of experiments	
Storage experiment	31
Practical methods	32
3.1. Transmission Electron Microscope (TEM)	
3. 2. Rearing	32
3.2.1. Mites rearing	32
3.2.2. Insects rearing	32
3.3. Bioassay tests	33
3.3.a. The insecticidal efficacy of zinc oxide and hydroph	hilic silica
(NPs)	33
Against target mites	
Against target insects	
Mortality percentage	
3.4. Persistence tests (Storage)	35
3.5 Tests on seeds stored for six months	36
3.5.1. Biochemical aspects of the seeds	36
3.5.2. Germination percentage and growth parameter	37
3.5.3. Estimation of photosynthetic pigments	
3.5.4. Safety tests	

3.5.4.1. Silicon estimation in wheat seedlings
3.5.4.2. Toxicity experiment of hydrophilic silica (NPs) on
male mice
Data analysis40
4. Experimental Results41
4.1. Structure study41
4.2. Insecticidal toxicity bioassay of T. putrescentiae and C.
berlesei41
4.2.1. Mortality percentage of <i>T. putrescentiae</i> adults on wheat grains
4.2.2. Insecticidal toxicity bioassay of <i>T. putrescentiae</i> by Abbot 's method
4.2.3. Mortality percentage of <i>Caloglyphus berlesei</i> adults on wheat flour
4.2.4. Insecticidal toxicity bioassay of <i>C. berlesei</i> by Abbot's method
4.3. Insecticidal toxicity bioassay of <i>S. oryzae</i> , <i>C. maculatus</i> and <i>T. castaneum</i>
4.3.1 Mortality percentage of rice weevil, <i>Sitophilus oryzae</i> adults on wheat
4.3.2. Insecticidal toxicity bioassay of <i>S. oryzae</i> by Abbot 'smethod
4.3.3. Mortality percentage of cowpea beetle, <i>Callosobruchus maculatus</i> adults
4.3.4. Insecticidal toxicity bioassay of <i>C. maculatus</i> by Abbot 's method
4.3.5. Mortality percentage of red flour beetle <i>Tribolium castaneum</i> adults
4.3.6. Insecticidal toxicity bioassay of <i>T. casteneum</i> by Abbot 's method

4.4. Data analysis for mortality percentage of <i>Tyrophagus putrescentiae</i> , <i>Caloglyphus berlesei</i> on wheat flour, <i>Sitophilus oryzae</i> on wheat and <i>Callosobruchus maculatus</i> , on cowpea 75
4.5. Effect of LC90 of hydrophilic silica (NPs) against tested insects under storeage conditions
4.5.1. Residual toxicity experiment78
4.5.2. Wheat and cowpea components before and after storage for 6 months with hydrophilic silica (NPs)
4.5.3. Changes in growth parameters of stored wheat grains treated with hydrophilic silica (NPs)82
4.5.4. Pigments content of hydrophilic silica-treated wheat seedlings for 6 months
4.5.5. Silicon content of wheat seedlings
4.6. Toxicity of hydrophilic silica (NPs) on male mice
4.6.1. Animal observations, food consumption, and changes in body weights
4.6.2. Histopathological Examinations
4.6.2.1. Liver histology
4.6.2.2. Lung histology
4.6.3. Biochemical examination
5. Discussion and conclusions
Insecticidal toxicity bioassay of <i>T. putrescentiae</i> and <i>C. berlesei</i>
Insecticidal toxicity bioassay of S. oryzae, C. maculatus and T.castaneum
Effect of LC90 of hydrophilic silica (NPs) against insects

Residual toxicity experiment98
Component analysis of wheat grains and cowpea seeds
Changes in germination percentage and growth parameters of stored wheat
grains101
Chlorophyll and carotene content of wheat seedlings102
Silicon residues in wheat seedlings103
Toxicity of hydrophilic silica (NPs) on male mice104
Liver and lung histology of mice104
Biochemical evaluation126
Summary
References
Arabic summary

List of Tables

 Table (14) Parameters of germinated wheat after 6 months storage period of

 treated and untreated grains
 83

Table (16) Silicon content in wheat seedlings before and after storage for 6
monthes after treatment with hydrophilic silica (NPs)85
Table (17) Changes in body weight of control and treated mice exposed to
hydrophilic silica (NPs) after 2 weeks of treatment and at the end of the
experiment (4 weeks)
Table (18) Blood biochemical indices of the experimental mice feeding on
wheat grains untreated and treated with hydrophilic silica
(NPs)

List of Figures

Figure 1(A) Mites on (wheat flour), (B) <i>Sitophilus oryzae</i> on (wheat grains) (C) <i>Callosobruchus maculatus</i> on (cowpea seeds) (D) <i>Tribolium castaneum</i> on (wheat flour)
Figure 2. The TEM images of hydrophilic silica nanoparticles (x=40) X: magnification power
Figure 3. The TEM images of zinc oxide nanoparticles (x=40) X: magnification power
Figure 4 . Mortality percentage of <i>Tyrophagus putrescentiae</i> adults on wheat flour treated with different levels of zinc oxide (A) and hydrophilic silica nanoparticles (B) during 7 days
Figure 5. Mortality percentage of <i>Tyrophagus putrescentiae</i> adults on wheat

flour treated with different levels of zinc oxide (**A**) and hydrophilic silica nanoparticles (**B**) during 7 days by **Abbot**'s method......49

Figure (15) Germination of wheat stored for 6 months of treated and
untreated grains
Figure (16) Histological images of livers from 3 animals feeding on wheat
grains untreated and treated with hydrophilic silica (NPs) after 28
days
Figure (17)Histological images of Lungs from 3 animals feeding on wheat
grains untreated and treated with hydrophilic silica (NPs) after 28
days90