

Kafrelsheikh University Faculty of Agriculture Agricultural Engineering Department

"CHEMIGATION THROUGH SURGE FLOW TECHNIQUE"

By

Mohammed Sobhy Mahmoud Khattab

B.Sc. in Agric. Mech., Fac. of Agric. Kafrelsheikh, Tanta Univ. 2003M.Sc. in Agric. Mech., Fac. of Agric. Kafrelsheikh Univ., 2008

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

In

Agricultural Science (Agricultural Mechanization) Agricultural Engineering Department, Faculty of Agriculture, Kafrelsheikh University Egypt. 2019

Kafrelsheikh University Faculty of Agriculture Agricultural Engineering Department

"CHEMIGATION THROUGH SURGE FLOW TECHNIQUE"

By

Mohammed Sobhy Mahmoud Khattab

This thesis for Ph. D. Degree in Agricultural Science (Agricultural Mechanization), Agricultural Engineering Department, Faculty of Agriculture, Kafrelsheikh University

Supervision Committee:

Prof. Dr. El-Said Mohamed Khalifa (May ALLAH have mercy on him) Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Kafrelsheikh University.

Dr. Abdelaziz Mohamed Okasha

Associate Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Kafrelsheikh University.

Prof. Dr. Moustafa Mahmoud Moustafa

Chief Researcher (Emeritus), Agricultural Engineering Research Institute, Agricultural Research Center, Ministry of Agriculture.

LIST OF CONTENT

Page No.

1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1 Surface Irrigation	3
	2.1.1 Furrow irrigation	3
	2.1.1.1 Design of furrow system	5
	2.1.2 Gated pipe irrigation system	7
	2.1.3 Surge flow irrigation	8
	2.1.3.1 Surge flow irrigation equipment	13
	2.1.3.2 Surge irrigation management	14
	2.2 Definition of chemigation / fertigation	17
	2.3 Chemigation management	19
	2.4 Irrigation Efficiencies	22
3.	MATERIALS AND METHODS	24
	3.1 Experimental site	24
	3.2 Irrigation systems	26
	3.3 Climate conditions	30
	3.4 Irrigation parameters	31
	3.4.1 Readily available water	31
	3.4.2 Irrigation intervals	32
	3.4.3 Soil moisture	33
	3.4.4 Advance time	33
	3.4.5 Applied irrigation water	33
	3.4.6 Water saving	34
	3.4.7 Water application efficiency	34
	3.4.8 Water distribution uniformity	34
	3.4.9 Grain yield (Kg/fed)	35
	3.4.10 Water productivity	35
	3.4.11 Fertilizer injection rate	35
	3.4.12 Chemicals Distribution Patterns	35
	3.4.13 Chemicals distribution uniformity	36
	3.4.14 Fertilizer productivity	36
	3.4.15 Cost analysis	37

	3.4.16 Statical analysis	39
4.	RESULTS AND DISCUSSION	40
	4.1 Advance time	40
	4.2 Amount of applied water	45
	4.3 Soil moisture distribution patterns	47
	4.4 Water application efficiency	52
	4.5 Water distribution uniformity	53
	4.6 Chemical Distribution Patterns	55
	4.7 Chemicals application efficiency	73
	4.8 Chemicals distribution uniformity	76
	4.9 Effect of surge flow technique on grain yield	81
	4.10 Water productivity	81
	4.11 Fertilizer productivity	82
	4.12 Costs analysis	84
5.	SUMMARY AND CONCLUSION	86
6.	REFERENCES	90
7.	APPENDIX	98
8.	ARABIC SUMMARY	

LIST OF TABLES

Table No.

Page No.

1.	The soil mechanical analyses of the investigated soil	25
2.	Chemical analyses of the investigated soil (meq/100g)	25
3.	Chemical analyses for irrigation water	25
4.	Experimental site	29
5.	Monthly mean values of some meteorological data	30
6.	Calculated water consumption use for maize crop	31
7.	Discharge (L/s), advance time (min) and water applied	
	under different treatments	41
8.	Amount of water applied, water application efficiency	
	and water distribution uniformity under different	
	treatments	46
9	Chemicals application efficiency and distribution	
	uniformity	77
10	Amount of water applied, grain yield, water productivity	
	(kg/m ³) and Fertilizer use efficiency, kg/kg-k under	
	different treatments	83
11	The annual costs of different irrigation treatments,	
	L.E/fed	85
A.1		98
A.2	Advance time in min, for surge irrigation treatments and	
	continuous irrigation at different discharges along the	
	furrow	98
A.3	Average of soil moisture content before and after 48	
	hours of irrigation along the furrow for 4 surge	
	treatment at different discharge rates	99
A.4	Average of soil moisture content before and after 48	
	hours of irrigation along the furrow for 5 surge	
	treatment at different discharge rates	100
A.5	Average of soil moisture content before and after 48	
	hours of irrigation along the furrow for 6 surge	
	treatment at different discharge rates	101
A.6		
	hours of irrigation along the furrow for continuous	102

	irrigation treatment at different discharge rates	
A.7	Water saving (%) under surge irrigation treatments as	
	compared to continuous irrigation at the same discharges	103
A.8	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 4 surge treatment 2 nd	
	injected surge with chemicals at different discharge rates.	104
A.9	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 4 surge treatment 3 rd	
	injected surge with chemicals at different discharge rates.	105
A.10	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 5 surge treatment 2 nd	
	injected surge with chemicals at different discharge rates.	106
A.11	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 5 surge treatment 3 rd	
	injected surge with chemicals at different discharge rates.	107
A.12	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 5 surge treatment 4 th	
	injected surge with chemicals at different discharge rates.	108
A.13	Average of EC ds/m before and after 48 hours of	100
	irrigation along the furrow for 6 surge treatment 2 nd	
	injected surge with chemicals at different discharge rates.	109
A.14	Average of EC ds/m before and after 48 hours of	107
	irrigation along the furrow for 6 surge treatment 3 rd	
	injected surge with chemicals at different discharge rates.	110
A.15	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 6 surge treatment 4 th	
	injected surge with chemicals at different discharge rates.	111
A.16	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for 6 surge treatment 5 th	
	injected surge with chemicals at different discharge rates.	112
A.17	Average of EC ds/m before and after 48 hours of	
	irrigation along the furrow for continuous irrigation	
	treatment at different discharge rates	113
A.18	The annual costs of different irrigation treatments,	
-	LE/fed	114
A 10	Analysis of variance for water application officiency	115

A.19 Analysis of variance for water application efficiency 115

A.20	Analysis of variance for water distribution uniformity	115
A.21	Analysis of variance for chemicals application efficiency	115
A.22	Analysis of variance for chemicals distribution uniformty	116
A.23	Analysis of variance for grain yield	117
A.24	Analysis of variance for water productivity	117

LIST OF FIGURES

	LIST OF FIGURES	
Fig.	No. Page	No.
1.	Cumulative infiltration and infiltration rate	26
2.	Geometry of furrow irrigation	27
3.		28
4.		
	discharge with 4 surges and continuous flow irrigation	42
5.		
	discharge with 5 surges and continuous flow irrigation	43
6.		
	discharge with 6 surges and continuous flow irrigation	44
7.		
	number of surges, discharges and continuous flow	
	irrigation treatments	47
8.	Soil moisture distribution pattern under discharge 0.56L/s.	49
9.	Soil moisture distribution pattern under discharge 0.75L/s	50
10.		51
11.	Water application efficiency under different number of	
	surges, discharges and continuous flow irrigation	
	treatments	53
12.	Water distribution uniformity under different number of	
	surges, discharges and continuous flow irrigation	
	treatments	54
13.		
	0.56L/s 2 nd fertigated surge	56
14.		
	0.56L/s 3 rd fertigated surge	56
15.	Chemicals distribution pattern 4 surges under discharge	
	0.75L/s 2 nd fertigated surge	57
16.		
	0.75L/s 3 rd fertigated surge	57
17.	Chemicals distribution pattern 4 surges under discharge	
10	0.95L/s 2 nd fertigated surge	58
18.	1 0 0	
10	0.95L/s 3 rd fertigated surge	58
19.	Chemicals distribution pattern 5 surges under discharge	59

	0.56L/s 2 nd fertigated surge	
20.	Chemicals distribution pattern 5 surges under discharge	
	0.56L/s 3 rd fertigated surge	59
21.	Chemicals distribution pattern 5 surges under discharge	
	0.56L/s 4 th fertigated surge	60
22.	Chemicals distribution pattern 5 surges under discharge	
	0.75L/s 2 nd fertigated surge	61
23.	Chemicals distribution pattern 5 surges under discharge	
	0.75L/s 3 rd fertigated surge	62
24.	Chemicals distribution pattern 5 surges under discharge	
	0.75L/s 4 th fertigated surge	62
25.	Chemicals distribution pattern 5 surges under discharge	
	0.95L/s 2 nd fertigated surge	63
26.	Chemicals distribution pattern 5 surges under discharge	
	0.95L/s 3 rd fertigated surge	63
27.	Chemicals distribution pattern 5 surges under discharge	
	0.95L/s 4 th fertigated surge	64
28.	Chemicals distribution pattern 6 surges under discharge	
	0.56L/s 2 nd fertigated surge	65
29.	Chemicals distribution pattern 6 surges under discharge	
	0.56L/s 3 rd fertigated surge	65
30.	Chemicals distribution pattern 6 surges under discharge	
	0.56L/s 4 th fertigated surge	66
31.	Chemicals distribution pattern 6 surges under discharge	
	0.56L/s 5 th fertigated surge	66
32.		
	0.75L/s 2 nd fertigated surge	67
33.	Chemicals distribution pattern 6 surges under discharge	
	0.75L/s 3 rd fertigated surge	67
34.		
	0.75L/s 4 th fertigated surge	68
35.	Chemicals distribution pattern 6 surges under dischar.ge	
	0.75L/s 5 th fertigated surge	68
36.	Chemicals distribution pattern 6 surges under discharge	
	0.95L/s 2 nd fertigated surge	69
37.	Chemicals distribution pattern 6 surges under discharge	69

	0.95L/s 3 rd fertigated surge	
38.	Chemicals distribution pattern 6 surges under discharge	
	0.95L/s 4 th fertigated surge	70
39.	Chemicals distribution pattern 6 surges under discharge	
	0.95L/s 5 th fertigated surge	70
40.	Chemicals distribution pattern continuous irrigation	
	under discharge 0.56L/s	71
41.	under discharge 0.56L/s Chemicals distribution pattern continuous irrigation	
	under discharge 0.75L/s	71
42.	Chemicals distribution pattern continuous irrigation	
	under discharge 0.95L/s	72
43.		
	of surges (2 nd , 3 rd) injected surge with chemicals and	
	discharges	74
44.		
	of Surges, (4 th , 5 th) injected surge with chemicals and	
	discharges	75
45.		
	of surges, $(2^{nd}, 3^{rd})$ injected surge with chemicals and	
	discharge	79
46.	Chemicals distribution uniformity under different number	
	of surges, (4 th , 5 th) injected surge with chemicals and	
	discharges	80

ABSTRACT

In the context, the experiment was carried out at a private farm on Tanta city, Gharbeia Governorate, Egypt during season 2017. The aim of the present work was to improving management of surge flow technique led to access high application efficiency, water distribution uniformity, fertilizer application and fertilizer uniform in comparison to traditional furrow irrigation under clay loam textured soil for corn crop in Delta Egypt. Treatments were 4, 5 and 6 pulses with 0.56, 0.75 and 0.95L/s discharges of water and chemicals injected surge applied uniformly in a 140 meters long line. Results showed that Water application efficiency of 6 pulses treatment was recorded the highest value at discharge of 0.95L/s which was 79% and the lowest value was 56% for continuous flow with discharge of 0.56L/s treatment. The best value of water distribution uniformity was obtained under surge flow with 5 pulses which was 93% at 0.75L/s, while the lowest value was occurred under continuous irrigation which was 66% at the discharge 0.56L/s treatment. Chemicals distribution uniformity best value was 63% under 5 pulses treatment through 3rd injected surge using 0.95 L/s discharge. The highest value of water productivity was obtained by 1.83kg/m³ by treatment of 6 pulses with the flow rate of 0.95L/s at fertilization in the fourth pulse compared to all other treatments. The highest value of irrigation cost was 924.5L.E/fed/season under discharge of 0.56L/s with continuous flow irrigation compared with the lowest value of it was 679.7L.E/fed/season through 6 pulses treatment at discharge of 0.95L/s.

KEYWORDS:

Surge flow, furrow irrigation, chemicals, chemigation, fertilizer, fertigation, uniformity.