RELATIONSHIP BETWEEN INSECT INFESTATIONS AND CERTAIN CUCUMBER CULTIVARS

By

MAGDA HASHIM MANSOUR

B.Sc. Agri. Sci. (Pesticides), Fac. Agric., Cairo Univ., 2008
M.Sc. Agri. Sci. (Economic Entomology), Fac. Agric., Cairo Univ., 2014

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In
Agricultural Sciences
(Economic Entomology)

Department of Economic Entomology and Pesticides
Faculty of Agriculture
Cairo University
EGYPT
2020

Name of Candidate: Magda Hashim Mansour
Degree: Ph.D.
Title of Thesis: Relationship Between Insect Infestations and Certain Cucumber Cultivars
Supervisors: Dr.Ezz El-Din Abd El Samea El-Shazly
Dr.Khaled El- Sayed Ali Abdel-Ati
Dr. Horia Ali Abdel Wahab
Department: Economic Entomology and Pesticides Branch: Economic Entomology
Date: 11 / $1 / 2020$

Abstract

Cucurbits were considered an important part of vegetable crops which cultivated in wide areas either old or newly reclaimed lands in Egypt. Cucumber, Cucumis sativus L. is the most important economic vegetable crop cultivated in Egypt. The present study was carried out in experimental farm at Mansheyet Saqqara village, Giza governorate during the two successive late summer seasons 2015 and 2016. Five cucumber cultivars namely Hayl, Nems, Beit Alpha Zena, Bahi and Wafier were sown on the $11^{\text {th }}$ August during both seasons. The objectives of this study were undertaken to shed light on the following: insect fauna diversity inhabiting some cucumber cultivars; population fluctuation of the common pests and its relation with some abiotic and biotic factors; susceptibility of the tested cucumber cultivars to these pest infestations and its relation with some morphological, anatomical and biochemical characters of leaves and biological studies on B. tabaci fed on two cucumber cultivars, Hayl and Beit Alpha Zena under normal conditions.

The present results was recorded that a total of 27 insect species. Aphis gossypii ranked the first dominance of the phytophagous pests infested all cucumber cultivars during the two tested seasons followed by Bemisia tabaci. The highest number of five tested common pests, Aphis gossypii, Bemisia tabaci, Liriomyza trifolii, Empoasca decipiens and Thrips tabaci occurred on September and October on the five tested cucumber cultivars. The population fluctuations of these common pests were affected by maximum, minimum temperatures and relative humidity. Data showed that the susceptibility degrees of the five investigated cucumber cultivars to five pests' infestations were classified into three groups: susceptible (s) cucumber cultivars, low resistant (LR) and moderate resistance (MR). Concerning the dissection and morphological structure of cucumber leaf, there were differences between the measurements of the four leaf layers of the tested cucumber cultivars. There were differences between numbers of stoma and trichomes in different cucumber cultivars. Also, the present work conducted that these pests infestations on different cucumber cultivar were related with Phenoloxidase, Peroxidase and Alpha esterase enzymes which related with plant resistance. The biological aspects of B. tabaci were significantly difference between Beit Alpha Zena and Hayl cultivars through two generations.
Key words: Cucumber, Cucumis sativus, fauna, insect pests, population fluctuation, susceptibility, morphology, anatomy, biochemistry, biology.

CONTENTS

Page
INTRODUCTION 1
REVIEW OF LITERATURE 4

1. Ecological studies 4
a. Survey, Dominance and abundance of cucumber pests and associated natural enemies 4
b. Population fluctuation of common cucumber insect pests 11
c. Relation between abiotic and biotic factors on the infestation rates of common cucumber insect pests 20
d. Susceptibility of cucurbit plants 25
e. Yield 29
2. Biochemistry, Morphological and Anatomical studies 30
a. Relationship between phytochemical leaf components \& enzymes and the cucurbits pest infestations 30
b. Impact of morphological and anatomical leaf structure on the cucumber pest infestations 37
3. Biological aspects of cotton white fly, Bemisia tabaci on vegetable crops 43
a. Cucurbits crops 43
b. Other vegetable crops 44
MATERIALS AND METHODS 46
A) Field studies 46
4. Survey of common pests and associated natural enemies on cucumber plants 46
5. Abundance and dominance of common cucumber pests on cucumber cultivars 46
6. Population fluctuation 47
7. Susceptibility of five cucumber cultivars 48
8. Yield 48
B) Laboratory studies 48
9. Morphological and dissection studies. 48
a.By using scanning electron microscope 48
b.By transition section of leaves 49
10. Biochemical studies 49
a. Determination of some phytochemical components in leaves. 49
11. Plant sample preparation 49
12. Determination of some phytochemical components in leaves 49
b. Determination of certain enzymes in leaves 50
13. Plant sample preparation 50
14. Determination of certain enzyme activities 50
15. Biological studies 50
a. Cotton whitefly Bemisia tabaci mass rearing 50
b. Biological parameters of B. tabaci development 51
C) Statistical analysis 51
RESULTS AND DISCUSSION 52
A) Ecological study 52
16. Survey of common pests and associated natural enemies 52
a. Pests 52
b. Natural enemies 54
c. The pollinator 54
17. Dominance and Abundance percentage of common insect pests and natural enemies 59
a. Dominance and Abundance percent of common insect pests and natural enemies on Hayl cultivar. 59
b. Dominance and Abundance on Nems cultivar. 62
c. Dominance and Abundance on Beit Alpha Zena cultivar 65
d. Dominance and Abundance on Bahi cultivar. 68
e. Dominance and Abundance on Wafier cultivar 71
f. Dominance and Abundance on all cucumber cultivars 74
18. The population fluctuation of common pests on cucumber cultivars 78
a. Population fluctuation of cotton aphid, Aphis gossypii infestations on cucumber cultivars 78
b. Population fluctuation of cotton whitefly, Bemisia tabaci infestations on cucumber cultivars 85
19. Cotton whitefly, B. tabaci adult infestations 85
20. Cotton whitefly, B. tabaci nymph infestations 92
21. Cotton whitefly, B. tabaci eggs. 99
c. Population fluctuation of faba bean leafminer, Liriomyza trifolii larvae /leaf on cucumber cultivars 105
d. Population fluctuation of onion thrips, Thrips tabaci individuals /leaf on cucumber cultivars 111
e. Population fluctuation of leafhopper, Empoasca decipiens individuals/ leaf on cucumber cultivars 117
22. Interaction between certain weather factors and the population fluctuation of some cucumber pests during two late summer seasons, 2015 and 2016 127
a. The effect of certain weather factors on the population fluctuation of cotton aphid, Aphis gossypii during two successive seasons, 2015 and 2016 127
23. The effect of maximum and minimum temperature 127
24. The effect of relative humidity 128
25. The effect of combined weather factors 128
b. Relationship between certain abiotic factors and the population of Bemisia tabaci on cucumber cultivars 131
26. Effect of maximum and minimum temperatures during late summer season, 2015 131
27. Effect of relative humidity during late summer season, 2015 132
28. Effect of combined weather factors during season, 2015 132
29. Effect of maximum and minimum temperatures during late summer season, 2016 133
30. Effect of relative humidity during late summer season, 2016. 134
31. Effect of combined weather factors during season, 2016 135
c. Relationship between certain abiotic factors and the population of Liriomyza trifolii on cucumber cultivars 138
32. Effect of maximum and minimum temperatures during late summer seasons, 2015 and 2016 138
33. Effect of relative humidity during seasons, 2015 and 2016. 139
34. Effect of the three combined weather factors 139
d. The effect of certain weather factors on the population fluctuation of onion thrips, Thrips tabaci during seasons, 2015 and 2016 141
35. Effect of maximum and minimum temperatures during late summer seasons, 2015 and 2016 141
36. Effect of relative humidity\% during two late summer seasons, 2015 and 2016 142
37. Effect of the three combined abiotic factors 142
e. The effect of certain weather factors on the leafhopper, Empoasca decipiens individuals on cucumber cultivars during seasons, 2015 and 2016 144
38. Effect of maximum and minimum temperatures during late summer seasons, 2015 and 2016 144
39. Effect of relative humidity\% during two late summer seasons, 2015 and 2016 145
40. Effect of the three combined abiotic factors 145
f. The interaction between population fluctuation of cotton aphid and cotton whitefly and two associated predators on five cucumber cultivars during 2015 and 2016 148
41. Susceptibility of different cucumber cultivars to the infestation of common pests during two successive seasons 2015 and 2016 152
a. Susceptibility of cucumber cultivars to cotton whitefly, Bemisia tabaci eggs, nymphs and adults/leaf 152
b. Susceptibility of cucumber cultivars to cotton aphid, Aphis gossypii individuals/leaf during seasons 2015 and 2016 157
c. Susceptibility of cucumber cultivars to Liriomyza trifolii larvae/leaf during two successive seasons 2015 and 2016... 158
d. Susceptibility of cucumber cultivars to onion thrips, Thrips tabaci during two successive seasons 2015 and 2016. 162
e. Susceptibility of cucumber cultivars to leafhopper, Empoasca decipiens during two successive seasons 2015 and 2016 162
42. Yield of five cucumber cultivars during two late summer seasons, 2015 and 2016 168
B. Biochemical studies 170
43. Impact of certain plant enzymes of five cucumber cultivars on infestation rates with common cucumber pests 170
a. Levels of certain plant enzymes of five cucumber cultivars at growth plant stages during two seasons 2015 and 2016 170
b. Correlation between certain plant enzymes of five cucumber cultivars and infestation rates with common cucumber pests 176
44. Impact of leaf phytochemical components of five cucumber cultivars on infestation rates with common cucumber pests 180a. Levels of leaf phytochemical components of five cucumber
cultivars at growth plant stages during two seasons 2015 and 2016 180
b. Correlation between some leaf phytochemical components of five cucumber cultivars and infestation rates of common cucumber pests 190
45. Impact of dissection structures in leaves of five cucumber cultivars on the infestation rates of common cucumber pests 196
a. Measurements of different dissection structures in leaves of five cucumber cultivars at growth plant stages during two seasons 2015 and 2016 196
b. Correlation between different dissection leaf structures of five cucumber cultivars and infestation rates with common cucumber pests. 201
46. Impact of morphological characters in leaves of five cucumber cultivars on the infestation rates of common cucumber pests 204
a. Measurements of different morphological characters in leaves of five cucumber cultivars at growth plant stages during two seasons 2015 and 2016 204
b. Correlation between different morphological characters of five cucumber cultivars and infestation rates with common cucumber pests 206
C) Biological studies 217
47. Comparison between biological aspects of B. tabaci fed on two cucumber cultivars 217
a. Egg stage. 217
b. 1st nymphal instar. 218
c. 2nd nymph instar 218
d. 3 rd nymphal instar 219
e. 4th nymphal instar 219
48. Fecundity, lifecycle, longevity, generation, sex ratio and survival rate parameters when fed on two cucumber cultivars 223
49. Mortality percent of B. tabaci stages on two cucumber cultivars for two generations under normal conditions 227
SUMMARY 230
50. Ecological studies 230
a. Survey of common pests and natural enemies on cucumber plants 230
b. Dominance and Abundance percent of common insect pests on all cucumber cultivars during seasons, 2015 and 2016 230
c. Population fluctuation of common pest infestations on five cucumber cultivars during two successive late summer seasons, 2015 and 2016 231
d. Relationship between certain abiotic and biotic factors and the population of common pests on five cucumber cultivars during seasons, 2015 and 2016 233
e. Susceptibility of the tested five cucumber cultivars to common pest infestations during two successive seasons 2015 and 2016 235
51. Biochemical, Morphological and Anatomical studies 236
a. Impact of some plant enzymes and phytochemical leaf contents of five cucumber cultivars on infestation rates with common cucumber pests 236
b. Impact of dissection and morphological structures in leaves of five cucumber cultivars on the infestation rates of common cucumber pests 238
52. Yield of five cucumber cultivars during two late summer seasons, 2015 and 2016 239
53. Biological studies 239
REFERENCES 241
ARABIC SUMMARY

LIST OF TABLES

No. Title Page
1 Survey and classification of insects occurred on cucumber plants during two late summer seasons 2015 and 2016 52
2 Insect diversity and species composition occurred on cucumber cultivations 57
3 Dominance and Abundance percent of common insect pests and natural enemies on Hayl cultivar during two successive seasons, 2015 and 2016 60
4 Dominance and Abundance percent of common insect pests and natural enemies on Nems cultivar during two successive seasons, 2015 and 2016 63
5 Dominance and Abundance percent of common insect pests and natural enemies on Beit Alpha Zena cultivar during two successive seasons, 2015 and 2016 66
6 Dominance and Abundance percent of common insect pests and natural enemies on Bahi cultivar during two successive seasons, 2015 and 2016 69
7 Dominance and Abundance percent of common insect pests and natural enemies on Wafier cultivar during 2015 and 2016 seasons 72
8 Dominance and Abundance percent of common insect pests and natural enemies on all cucumber cultivars during two successive seasons, 2015 and 2016 75
9 Population fluctuation of cotton aphid, Aphis gossypii individuals/ leaf on cucumber cultivars during late summer season, 2015 80
10 Population fluctuation of cotton aphid, Aphis gossypii individuals /leaf on cucumber cultivars during late summer season, 2016 81
11 Population fluctuation of cotton whitefly, Bemisia tabaci adults/ leaf on cucumber plants during 2015 season. 87
12 Population fluctuation of cotton whitefly, Bemisia tabaci adults/ leaf on cucumber plants during 2016 season. 88
13 Population fluctuation of cotton whitefly, Bemisia tabaci nymphs /leaf on cucumber plants during 2015 season 94
14 Population fluctuation of cotton whitefly, Bemisia tabaci
nymphs /leaf on cucumber plants during 2016 season 95
15 Population fluctuation of cotton whitefly, Bemisia tabaci eggs /leaf on cucumber plants during 2015 season 100
16 Population fluctuation of cotton whitefly, Bemisia tabaci eggs /leaf on cucumber plants during 2016 season 101
17 Population fluctuation of leafminer, Liriomyza trifolii larvae /leaf on cucumber plants during 2015 season 106
18 Population fluctuation of leafminer Liriomyza trifolii larvae /leaf on cucumber plants during 2016 season 107
19 Population fluctuation of onion thrips, Thrips tabaci individuals /leaf on cucumber plants during 2015 season 112
20 Population fluctuation of onion thrips, Thrips tabaci individuals /leaf on cucumber plants during 2016 season 113
21 Population fluctuation of leafhopper, Empoasca decipiens individuals /leaf on cucumber plants during 2015 season 118
22 Population fluctuation of leafhopper, Empoasca decipiens individuals /leaf on cucumber plants during 2016 season 119
23 Relationship between some weather factors and population fluctuations of aphid, Aphis gossypii individuals infesting cucumber plants during two successive seasons, 2015 and 2016 130
24 Relationship between some weather factors and population fluctuations of Bemisia tabaci infesting cucumber plants during season, 2015 136
25 Relationship between some weather factors and population fluctuations of Bemisia tabaci infesting cucumber plants during season, 2016 137
26 Relationship between some weather factors and population fluctuations of leafminer, Liriomyza trifolii larvae infesting cucumber plants during two successive seasons, 2015 and 2016 140
27 Relationship between some weather factors and population fluctuations of onion thrips, Thrips tabaci individuals infesting cucumber plants during two successive seasons, 2015 and 2016 143
28 Relationship between some weather factors and population fluctuations of leafhopper, Empoasca decipiens individuals infesting cucumber plants during two successive seasons, 2015 and 2016 146
29 Interaction between population fluctuation of cotton aphid and cotton white fly infesting five cucumber cultivars and associated predators during two successive seasons, 2015 and 2016 151
30 Susceptibility of cucumber cultivars to cotton whitefly, Bemisia tabaci infestations during two successive seasons, 2015 and 2016 155
31 Susceptibility of cucumber cultivars to cotton aphid, Aphis gossypii and faba bean leafminer, Liriomyza trifolii infestations during two successive seasons, 2015 and 2016 160
32 Susceptibility of cucumber cultivars to thrips, Thrips tabaci and leafhopper, Empoasca decipiens infestations during two successive seasons, 2015 and 2016 164
33 Mean production weight of five cucumber cultivars /plot/kg during two late summer seasons, 2015 and 2016.. 169
34 Levels of certain plant enzymes of five cucumber cultivars at seedling stage during two seasons 2015 and 2016 173
35 Levels of certain plant enzymes of five cucumber cultivars at flowering stage during two seasons 2015 and 2016 173
36 Average levels of certain plant enzymes of five cucumber cultivars at fruiting stage during two seasons 2015 and 2016. 174
37 Average levels of certain plant enzymes of five cucumber cultivars during two seasons 2015 and 2016 176
38 Interaction between certain plant enzymes and the infestation rate of common pests on five all cucumber cultivars during late summer seasons, 2015 and 2016 179
39 Levels of leaf phytochemical components of five cucumber cultivars at seedling stage during two late summer seasons, 2015 and 2016 182
40 Levels of leaf phytochemical components of five cucumber cultivars at flowering stage during two late summer seasons, 2015 and 2016 185
41 Levels of leaf phytochemical components of five cucumber cultivars at fruiting stage during two late summer seasons, 2015 and 2016 186
42 Levels of leaf phytochemical components of five cucumber cultivars at all growth stages during two late summer seasons, 2015 and 2016 189
43 Interaction between seven leaf phytochemical components and the infestation rates of common pests on five all cucumber cultivars during late summer seasons, 2015 and 2016. 193
44 Measurements of some dissection leaf structures of five cucumber cultivars at three growth stages 198
45 Interaction between different dissection structures and the infestation rate of common pests on five all cucumber cultivars during late summer seasons, 2015 and 2016 203
46 Average levels of some morphological leaf parameters of five cucumber varieties at three growth stages during summer season, 2015 and 2016 208
47 Average levels of some morphological leaf parameters of five cucumber cultivars during summer season, 2015 and 2016 209
48 Interaction between some morphological leaf parameters and the infestation rate of common pests on five all cucumber cultivars during late summer seasons, 2015 and 2016 209
49 Developmental period of B. tabaci stages on two cucumber cultivars for $1^{\text {st }}$ generation under natural conditions 221
50 Developmental period of B. tabaci stages on two cucumber cultivars for $2^{\text {nd }}$ generation under natural conditions. 221
51 Biological parameters of B. tabaci fed on two cucumber cultivars for $1^{\text {st }}$ generation under natural conditions 225
52 Biological parameters of B. tabaci fed on two cucumber cultivars for $2^{\text {nd }}$ generation under natural conditions 226
53 Mortality percent of B. tabaci stages on two cucumber cultivars for two generation under natural conditions 227

LIST OF FIGURES

No. Title Page
1 Dominance percentage of common insect species on Hayl cultivar during two successive seasons, 2015 and 2016 61
2 Abundance percentage of common insect species on Hayl cultivar during two successive seasons, 2015 and 2016 61
3 Dominance percentage of common insect species on Nems cultivar during two successive seasons, 2015 and 2016 64
4 Abundance percentage of common insect species on Nems cultivar during two successive seasons, 2015 and 2016 64
5 Dominance percentage of common insect species on Beit Alpha Zena cultivar during two successive seasons, 2015 and 2016 67
6 Abundance percentage of common insect species on Beit Alpha Zena cultivar during two successive seasons, 2015 and 2016 67
7 Dominance percentage of common insect species on Bahi cultivar during two successive seasons, 2015 and 2016 70
8 Abundance percentage of common insect species on Bahi cultivar during two successive seasons, 2015 and 2016 70
9 Dominance percentage of common insect species on Wafier cultivar during two successive seasons, 2015 and 2016 73
10 Abundance percentage of common insect species on Wafier cultivar during two successive seasons, 2015 and 2016 73
11 Dominance percentage of common insect species on cucumber cultivars during two successive seasons, 2015 and 2016 76
12 Abundance percentage of common insect species on cucumber cultivars during two successive seasons, 2015 and 2016 76
13 Mean number of Aphis gossypii individuals / leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 82
14 Mean number of Aphis gossypii individuals / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 83
15 Mean number of Aphis gossypii individuals /.leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 83
16 Mean number of Aphis gossypii individuals / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 84
17 Mean number of Aphis gossypii individuals / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 84
18 Mean number of B. tabaci adults/ leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 89
19 Mean number of B. tabaci adults / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 90
20 Mean number of B. tabaci adults / leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 90
21 Mean number of B. tabaci adults / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 91
22 Mean number of B. tabaci adults / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 91
23 Mean number of B. tabaci nymphs / leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 96
24 Mean number of B. tabaci nymphs / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 97
25 Mean number of B.tabaci nymphs / leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 97
26 Mean number of B. tabaci nymphs / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 98
27 Mean number of B. tabaci nymphs / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 98
28 Mean number of B. tabaci eggs / leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 102
29 Mean number of B. tabaci eggs / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 103
30 Mean number of B. tabaci eggs / leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing season, 2015 and 2016 103
31 Mean number of B. tabaci eggs / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 104
32 Mean number of B. tabaci eggs / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 104
33 Mean number of L. trifolii larvae / leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 108
34 Mean number of L. trifolii larvae / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 109
35 Mean number of L. trifolii larvae / leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 109
36 Mean number of L. trifolii larvae / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 110
37 Mean number of L. trifolii larvae / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 110
38 Mean number of T. tabaci individuals / leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 114
39 Mean number of T. tabaci individuals / leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 115
40 Mean number of T. tabaci individuals / leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 115
41 Mean number of T. tabaci individuals / leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 116
42 Mean number of T. tabaci individuals / leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 116
43 Mean number of E. decipiens individuals/ leaf on Hayl cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 120
44 Mean number of E. decipiens individuals/ leaf on Nems cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 121
45 Mean number of E. decipiens individuals/ leaf on Beit Alpha Zena cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 121
46 Mean number of E. decipiens individuals/ leaf on Bahi cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 122
47 Mean number of E. decipiens individuals/ leaf on Wafier cultivar in relation to temperature and relative humidity during two growing seasons, 2015 and 2016 122
48 Susceptibility of cucumber cultivars to B. tabaci a) eggs, b) nymphs and c) adults during two growing seasons, 2015 and 2016 156
49 Susceptibility of cucumber cultivars to a) A. gossypii and b) L. trifolii during two growing seasons, 2015 and 2016 161
50 Susceptibility of cucumber cultivars to a) E. decipiens and b) T. tabaci during two growing seasons, 2015 and 2016 165
51 Mean production weight of five tested cucumber /tons/feddan during two late summer seasons, 2015 and 2016 169
52 A Dissection structure of different cucumber leaves in: Hayl, Nems, Beit Alpha Zena, Bahi and Wafier cultivars at seedling stage 199
53 A Dissection structure of different cucumber leaves in: Hayl, Nems, Beit Alpha Zena, Bahi and Wafier cultivars at flowering stage 199
54 A Dissection structure of different cucumber leaves in: Hayl, Nems, Beit Alpha Zena, Bahi and Wafier cultivars at fruiting stage 200
55 Scanning Electron Microscope of different cucumber leaf surfaces was showed trichomes in: a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at seedling
stage 210
56 Scanning Electron Microscope of different cucumber leaf surfaces was showed stoma in : a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at seedling stage 211
57 Scanning Electron Microscope of different cucumber leaf surfaces was showed trichomes in: a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at flowering stage 212
58 Scanning Electron Microscope of different cucumber leaf surfaces was showed stoma in: a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at flowering stage 213
59 Scanning Electron Microscope of different cucumber leaf surfaces was showed trichomes in: a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at fruiting stage 214
60 Scanning Electron Microscope of different cucumber leaf surfaces was showed stoma in: a) Hayl, b) Nems, c) Beit Alpha Zena, d) Bahi and E) Wafier cultivars at fruiting stage 215
61 Developmental period of B. tabaci stages on two cucumber cultivars for two generations under natural conditions 222
62 Biological parameters of B. tabaci on two cucumber cultivars for two generation under natural conditions 226
63 Mortality percent of B. tabaci stages on two cucumber cultivars for two generation under natural conditions 227

