



### EFFECT OF SOME NANO TECHNOLOGICAL PESTICIDES ON SOME MEDICINAL PLANTS PESTS

BY

### **Mohamed Ahmed Gamal Mohamed**

B.Sc. Science (Zoology Special), Faculty of science, South Vally University 2003 Biotechnology diploma, Faculty of science, Zagazig University 2004 Medicinal plant diploma, Faculty of science, Zagazig University 2013

#### THESIS

Submitted in partial fulfilment of the requirements of the degree of

### MASTER OF SCIENCE

in

Agricultural Science (Pesticides)

Plant Production Department Faculty of Technology & Development Zagazig University, Egypt

### 2019

## LIST OF CONTENTS

| No.       | Title                                                           | Page |
|-----------|-----------------------------------------------------------------|------|
| Ι         | ACKNOWLEDEGMENT                                                 |      |
| II        | ABSTRACT                                                        |      |
| III       | INTRODUCTION                                                    | 1    |
| IV        | REVIEW OF LITERATURE                                            | 4    |
| 1.        | Role of medicinal plants in modern medicines                    | 4    |
| 2.        | Harmful effects and economic loses of pests under study         | 8    |
| <b>A.</b> | Bemisia tabaci                                                  | 9    |
| <b>B.</b> | Aphis gossypii                                                  | 10   |
| 3.        | Insecticides and pest control                                   | 11   |
| 3.1.      | Toxicity of pesticides                                          | 11   |
| <b>A.</b> | Imidacloprid insecticide                                        | 12   |
| B.        | Imidacloprid residue                                            | 15   |
| C.        | Imidacloprid stability                                          | 16   |
| D.        | Adverse effects of Imidacloprid                                 | 16   |
| 4.        | Current status of Nano pesticide.                               | 19   |
| 5.        | The role of Imidacloprid Nano particles (INPs) in pest control  | 21   |
| 6.        | The role of silica Nano particle in pest control                | 21   |
| 7.        | Assessment of dissipation rate of a pesticide after application | 23   |
| 8.        | Effect of processing on pesticide residues                      | 23   |
| V         | MATERIALS AND METHODS                                           | 25   |

| 1.   | Sampling of target insects                           | 25 |
|------|------------------------------------------------------|----|
| 2.   | Tested insecticide used                              | 25 |
| 2.1. | Silicon dioxide                                      | 25 |
| 2.2. | Imidacloprid                                         | 26 |
| A    | Laboratory study                                     | 26 |
| В.   | Field studies                                        | 26 |
| 1.   | Experimental design                                  | 27 |
| 2.   | Residue studied                                      | 28 |
| 2.1. | Sampling                                             | 29 |
| 2.2. | Chemicals                                            | 30 |
| 3.   | The Spectrophotometric determination of silica       | 30 |
| а.   | Procedure of sample preparation                      | 30 |
| b.   | Preparation for Silica stock solution                | 31 |
| c.   | Procedure of standard work curve                     | 31 |
| 4.   | Standard work curve                                  | 32 |
| 5.   | The Spectrophotometric determination of Imidacloprid | 33 |
| 5.1. | Extraction of Imidacloprid and its Nanoparticles     | 33 |
| 5.2. | Chemicals and solutions                              | 34 |
| 5.3. | Apparatus                                            | 35 |
| 5.4. | Procedures                                           | 35 |
| 5.5. | Validation                                           | 35 |

| 6.   | Preparation of silica Nano paricles (SNPs) and Imidacloprid Nanoparticles | 36  |
|------|---------------------------------------------------------------------------|-----|
|      | (INPs)                                                                    |     |
| 7.   | Statistical analysis                                                      | 36  |
| VI   | Results and Discussions                                                   | 37  |
|      |                                                                           |     |
| I.   | Laboratory studied                                                        | 37  |
| 1.   | The activity study of the tested Silica and Nano Selica                   | 37  |
| 2.   | Determination of toxicity of silicon and silicon dioxide in two forms on  | 38  |
|      | the insect B. tabaci and A. gossypii                                      |     |
| 3.   | Comparative study of the effect of Imidacloprid and Nano Imidacloprid on  | 42  |
|      | B. tabaci and A .gossypii                                                 |     |
| II.  | Field studies                                                             | 48  |
| 1.   | Assessment of residues of Imidacloprid and its Nano particles (INPs) in   | 48  |
|      | thyme leaves, stems and soil                                              |     |
| 2.   | Assessment of residues of Imidacloprid and its Nano particles (INPs) in   | 52  |
|      | mint leaves, stems and soil                                               |     |
| 3.   | Assessment of residues of (Silicon Dioxide) SiO2 & Silicon Dioxide Nano   | 57  |
|      | particles (SNPs) in thyme leaves, stems and soil                          |     |
| 4.   | Assessment of residues of (Silicon Dioxide) SiO2 & Silicon Dioxide        | 62  |
|      | Nano particles (SNPs) in mint leaves, stems and soil                      |     |
| III. | Technique of drying and boiling in removing ratios of pesticides tested   | 67  |
|      | after application in mint and thyme                                       |     |
| VII  | SUMMARY                                                                   | 77  |
| VIII | REFERENCES                                                                | 83  |
| IX.  | Arabic summary                                                            | 8-1 |

## List Tables

| No. | Title                                                                                                                                                               | Page |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Mortality response for (Silicon Dioxide) SiO <sub>2</sub> & Silicon Dioxide<br>Nano particles (SNPs) (cumulative mortality) Against <i>Bemisia</i><br><i>tabaci</i> | 37   |
| 2   | Mortality response for (Silicon dioxide) SiO <sub>2</sub> & Silicon dioxide<br>Nano particles (SNPs) (cumulative mortality) against <i>Aphis</i><br>gossybii        | 37   |
| 3   | Toxicity data of silicon dioxide in traditional and Nano images<br>on <i>B. tabaci</i> at different time's<br>intervals                                             | 39   |
| 4   | Toxicity data of Silicon dioxide in traditional and nano images<br>on <i>A. gossybii</i> at different times intervals                                               | 40   |
| 5   | Mortality response for (Imidacloprid) IMI& and Imidacloprid<br>Nanoparticles (INPs) (cumulative mortality) against <i>Bemisia</i><br><i>tabaci</i>                  | 43   |
| 6   | Mortality response for (Imidacloprid) IMI & Imidacloprid<br>Nano particles (INPs) (cumulative mortality) against <i>Aphis</i><br>gossybii                           | 43   |
| 7   | Toxicity data of traditional Imidacloprid and Imidacloprid<br>Nano particles on <i>B. tabaci</i> at different times intervals                                       | 44   |
| 8   | Toxicity data of traditional Imidacloprid and Imidacloprid<br>Nano particles on <i>A. gossybii</i> at different times intervals                                     | 46   |

| 9  | Behavior of loss of Imidacloprid and its Nano particles (INPs)           | 49 |
|----|--------------------------------------------------------------------------|----|
|    | in thyme leaves                                                          |    |
|    |                                                                          |    |
| 10 | Behavior of loss of Imidacloprid & Imidacloprid Nano particles           | 50 |
|    | (INPs) in thyme stems                                                    |    |
|    |                                                                          |    |
| 11 | Behavior of loss of Imidacloprid & Imidacloprid Nano particles           | 51 |
|    | (INPs) in thyme soil                                                     |    |
| 12 | Behavior of loss of Imidacloprid and its Nano particles (INPs)           | 52 |
|    | in mint leaves                                                           |    |
|    |                                                                          |    |
| 13 | Behavior of loss of Imidacloprid & Imidacloprid Nano particles           | 53 |
|    | (INPs) in mint stems                                                     |    |
|    |                                                                          |    |
| 14 | Behavior of loss of Imidacloprid & Imidacloprid Nano                     | 55 |
|    | particles (INPs) in mint soil                                            |    |
| 15 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 58 |
|    | Nano particles (SNPs) in thyme leaves                                    |    |
| 16 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 60 |
|    | Nano particles (SNPs) in thyme stems                                     |    |
|    |                                                                          |    |
| 17 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 61 |
|    | Nano particles (SNPs) in thyme soil                                      |    |
| 18 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 62 |
|    | Nano particles (SNPs) in mint leaves.                                    |    |
| 19 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 64 |
|    |                                                                          |    |
|    | Nano particles (SNPs) in mint stems                                      |    |
| 20 | Behavior of loss of (Silicon dioxide) SiO <sub>2</sub> & Silicon Dioxide | 65 |
|    | Nano particles (SNPs) in mint soil                                       |    |

| 21 | Effect of sun drying processing on dislodging residues of                   | 68 |
|----|-----------------------------------------------------------------------------|----|
|    | Imidacloprid and its Nano particles (INPs) in thyme leaves                  |    |
| 22 | Effect of boiling processing on dislodging residues of                      | 68 |
|    | Imidacloprid and its Nano particles (INPs) in thyme leaves                  |    |
| 23 | Effect of sun drying processing on dislodging residues of                   | 69 |
|    | Imidacloprid and its Nano particles (INPs) in mint leaves                   |    |
| 24 | Effect of boiling processing on dislodging residues of                      | 69 |
|    | Imidacloprid and its Nano particles (INPs) in mint leaves                   |    |
| 25 | Effect of sun drying processing on dislodging residues of SiO <sub>2</sub>  | 71 |
|    | and its Nano particles (SNPs) in mint leaves                                |    |
| 26 | Effect of boiling processing on dislodging residues of SiO <sub>2</sub> and | 71 |
|    | its Nano particles (SNPs) in mint leaves                                    |    |
| 27 | Effect of sun drying processing on dislodging residues of SiO <sub>2</sub>  | 72 |
|    | and its Nano particles (SNPs) in thyme leaves                               |    |
| 28 | Effect of boiling processing on dislodging residues of SiO <sub>2</sub> and | 73 |
|    | its Nano particles (SNPs) in thyme leaves                                   |    |
|    |                                                                             |    |

# List Figures

| No. | Title                                                                                                                             | Page |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Transmission electron micrograph (TEM) of 85 nm diameter 99 % pure Nano silica                                                    | 38   |
| 2   | Transmission electron micrograph (TEM) of 75 nm diameter 99 % pure Imidacloprid Nano particles                                    | 38   |
| 3   | Cumulative mortality percent for Silicon dioxide and Silicon SNPs against <i>B. tabaci</i> , at different period's intervals (hr) | 39   |
| 4   | Cumulative Mortality percent for Silicon dioxide and SNPs against <i>A. gossybii</i> , at different period's intervals (hr)       | 41   |
| 5   | Cumulative mortality percent for Imidacloprid and INPs against <i>B. tabaci</i> , at different period's intervals (h)             | 44   |
| 6   | Cumulative mortality percent for Imidacloprid and INPs against <i>A. gossybii</i> , at different period's intervals (h)           | 46   |
| 7   | Behavior of loss in residues in thyme leaves at time after application in day's intervals                                         | 49   |
| 8   | Behavior of loss in residues in thyme stems at time after application in day's intervals                                          | 50   |
| 9   | Behavior of loss in residues in thyme soil at time after application in day's intervals                                           | 52   |
| 10  | Behavior of loss in residues in mint leaves at time after application<br>in day's intervals                                       | 53   |
| 11  | Behavior of loss in residues in mint stems at time after application in day's intervals                                           | 54   |
| 12  | Behavior of loss in residues in mint soil at time after application in day's intervals                                            | 56   |

| 13 | Behavior of loss in residues in thyme leaves at time after              | 59 |
|----|-------------------------------------------------------------------------|----|
|    | application in day's intervals                                          |    |
| 14 | Behavior of loss in residues in thyme stems at time after               | 60 |
|    | application in day's intervals                                          |    |
| 15 | Behavior of loss in residues in thyme soil at time after application in | 61 |
|    | day's intervals                                                         |    |
| 16 | Behavior of loss in residues in mint leaves at time after application   | 62 |
|    | in day's intervals                                                      |    |
| 17 | Behavior of loss in residues in mint stems at time after application in | 64 |
|    | day's intervals                                                         |    |
| 18 | Behavior of loss in residues in mint soil at time after application in  | 65 |
|    | day's intervals                                                         |    |

#### ABSTRACT

This work is an attempt to obtain basic information of Silica offer expanded possibilities for use in horticultural crops. However, many crop pests are found on the leaf underside and this is especially challenging when using silica because the substance must have direct contact with the insect to be effective. In this study we used two forms traditional and Nano, Silicon dioxide SiO<sub>2</sub> and the same technique for imidacloprid to evaluate their insecticidal efficacies against two different pests, Bemisia tabaci and Aphis gossybii. Lethal concentration (LC<sub>s</sub>) at 24h, 48h, 72h, and 96h., were measured, on the Mentha pulegium and Thymus vulgaris. Residues of  $SiO_2$  and imidacloprid in *M. pulegium* and *T. vulgaris* its Nano particles of the tested pesticide after application, were also studied. Our results indicated that, a cumulative mortality of Bemisia tabaci and Aphis gossybsii were increased as the insecticide concentration with laps of time. The highest mortality value of Bemisia tabaci and Aphis gossybsii was recorded at 96h with two compounds after application. As for, SNPs which was surpasse on A. gossyii after 24hr. After treated with 2.50  $\mu$ g/ml, whereas the compound able to achieve the same result on *B*. tabaci but after 48hr of treatment with the same dose concerning the effect of imidacloprid in the two forms, data revealed on elevation drastically in the activity of Nano portion than the traditional picture. The great control of Nano particle lead to 20 folds more than the normal individual in the each of the two pests. On the other, hand, A. gossypii had shown an appreciable rate of susceptibility than B. tabaci. Fortunality, the same effect and behavior was marked also with Silicon dioxide. Residues of imidacloprid and its Nano particles in mint and thyme leaves, stems and soil in addition to processing drying and boiling techniques in the removal ratios of the tested pesticide after application with mint and thyme lead to evaporation of the surface residue which is dependent on temperature condition, biological dilution which is dependent on the increase mass of plants, chemical or biochemical decomposition, metabolism and photolysis. Our results indicated that cumulative mortality of *Bemisia tabaci* and *Aphis gossybsii* were increased as the insecticide concentration and /or the time increased. Also, data achieved imidacloprid and its Nano form INPs, can make a valuable contribution to integrated pest management and will be most efficacious when directed against *B.tabaci* and *A. gossypii*.

In general, it concluded that *A. gossypii* was interesting with more susceptibility to the four compounds, while the *B. tabaci* forthrightly, selection pressure have rekindled the Nano forms than the traditional on he two pests. Our results ought to considered for further use in conjunction towards the two pests.