

Clinical and diagnostic investigations on Cryptosporidiosis of small ruminant in Sohag Governorate, Egypt

Thesis Presented By Samia Attia Omran Abd-Allah (B.V. Sc., Faculty of Veterinary Medicine, South Valley University, 2011) For the degree of M. V. Sci. (Infectious Diseases)

UNDER SUPERVISION OF Prof. Dr. Ahmed Mahmoud Attia ZAITOUN

Professor of infectious diseases

Department of Animal Medicine

Faculty of Veterinary Medicine

Assiut University Prof.Dr. Ahmed Abdel-Rady Mahmoud

Professor of infectious diseases

Department of Animal Medicine

Faculty of Veterinary Medicine Assiut University

Prof. Dr. Hassan GAD ELRAB

Emeritus chief researcher of food hygiene Animal Health Research Institute, Sohag branch

> Department of Animal Medicine Faculty of Veterinary Medicine ASSIUT UNIVERSITY (2019)

Contents

No.	Contents	Pages
1	Introduction	1
2	Literature	5
3	Materials and Methods	40
4	Results	49
5	Discussion	67
6	Conclusion and Recommendations	79
7	Summary	80
8	References	82
9	Arabic summary	أ_ ب

Pages No. Table Classification of collected fecal samples from sheep and 40 1 goat. The overall prevalence of cryptosporidium infection of the 2 52 examined animals Results of cryptosporidiosis by using conventional and 53 3 molecular technique in sheep and goat Relationship between animal age and Cryptosporidium 4 53 infection in sheep Relationship between animal age and Cryptosporidium 5 54 infection in goat Sex susceptibilities and cryptosporidium infection in sheep 56 6 Sex susceptibilities and cryptosporidium infection in goat 7 57 Management system and cryptosporidium infection in 8 **58** sheep Seasonal effects on prevalence of cryptosporidium infection 9 59 in sheep Seasonal effects on prevalence of cryptosporidium infection 10 60 in goats weaning and prevalence of cryptosporidium infection in 11 61 sheep Weaning and prevalence of cryptosporidium infection in 62 12 goats

List of Tables

No.	figures	pages
1	Life cycle of Cryptosporidium in different animal species and humans	14
2	The relationship between animal species and cryptosporidium infection	52
3	Results of cryptosporidiosis by using conventional and molecular technique in sheep and goat	53
4	Relationship between animal age and Cryptosporidium infection in sheep	54
5	RelationshipbetweenanimalageandCryptosporidium infection in goat	55
6	Relationship between sex of sheep and Cryptosporidium infection	56
7	Relationship between sex of goat and Cryptosporidium infection	57
8	Relationship between locality and Cryptosporidium infection in sheep	58
9	Relationship between seasonal variation and Cryptosporidium infection in sheep	59
10	Relationship between seasonal variation and Cryptosporidium infection in goat	60
11	Relationship between weaning and Cryptosporidium infection in sheep	61
12	Relationship between weaning and Cryptosporidium infection in goat	62

List of Figures

List of photos

		_
NO.	Photo	Pages
1	A lamb suffering from diarrhea	63
2	Five months old lamb suffer from diarrhea and emaciation	63
3	Two-month-old lamb showing diarrhea	64
4	Six-month-old sheep was suffered from emaciation and recumbency	64
5	An infected goat -kid showing emaciation	65
6	Stained samples with modified Ziehl-Neelsen (X400).	65
7,8	Stained sample with modified Zieh-Neelsen (X1000).	65
9, 10	Results of PCR for detection of cryptosporidium parvum	66

SUMMARY

The present study was conducted on 120 small ruminants (90sheep and 30 goats). The age of those animals starts from one day till 2years. They examined during the period from November 2017 to January 2019, these animals belongs to some animals farmers house and farms in sohag governorate.

The clinical findings of cryptosporidiosis in the examined sheep and goat were showed mild to severe diarrhea and varying degree of dehydration. State of the appetite varied according to the severity of the disease. Some cases were suffered from fever. The feces were pale yellow, yellow or greenish in color, watery or pasty in consistency and some ties contained mucous and blood.

The result of conventional technique (MZN smears) in the present study says that animals were infested by *Cryptosporidium* oocysts (they were ovoid to spherical in shape). The prevalence rate was 27.5% in small ruminant (23.33 in sheep and 40% in goat). In sheep (31.4% from day to 3months, 21.6% from 3-6months and 11.11% above 6 months). In goat (50% from day to 3 months and 25% from 3-6 months)

Both male sheep and goat were more susceptible than female of both species to infection with cryptosporidiosis (male sheep 27.65% and male goat 41.17%, female sheep 18.60% and female goat 38.46%). Non –hot months has higher infection rate for *cryptosporidium* in sheep and goat (29.78% in sheep and 43.75% in goat) than hot months (16.27% in sheep and 35.71% in goat).

Non-weaned sheep and goat has higher infection rate for cryptosporidiosis (30.76% in sheep and 72.72% in goat) than weaned (20.31% in sheep and 21.05% in goat).

The molecular technique used for identification of cryptosporidium infection in sheep and goat was species specific PCR for C.parvum. This technique was performed on 20 fecal samples (12 sheep 8 goat) and revealed that75 %(9/12) in sheep and 62.5% (5/8) in goat by mean of70% (14/20) were positive for cryptosporidium parvum.

Results declared that PCR was superior test whereas, MZN stain method is a cheapest methods.

