IMPROVEMENT OF PRODUCTION AND QUALITY OF GARLIC UNDER WATER STRESS CONDITIONS

By

WALAA MOHAMED SAPT AHMED

B.Sc. Agric. Sc. (Vegetable Crops), Fac. Agric., Cairo University, 2005 M.Sc. Agric. Sc. (Vegetable Crops), Fac. Agric., Ain Shams University, 2011

> A Thesis Submitted in Partial Fullfillment Of the Requirements for the Degree of

DOCTOR OF PHYLOSOPHY in Agricultural Sciences (Vegetable Crops)

> Department of Horticulture Faculty of Agriculture Ain Shams University

ABSTRACT

Walaa Mohamed Sapt Ahmed: Improvement of production and quality of garlic under water stress conditions. Unpublished Ph. D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2019.

The field experiment was carried out during the two growing seasons of 2013/2014 and 2014/2015, at the farm of Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Egypt, to investigate the effect of irrigation at different percentage of available soil water depletion, soil conditioner, foliar application of glycine betaine and potassium silicate on vegetative growth, bulbs yield and its components as well as chemical composition of garlic (Allium sativum L.), cv. Sids-40. The experimental treatments were arranged in a split split plot design with three replicates. The applied irrigation levels (55-60, 70-75 and 85-90%) were assigned in the main plots, soil conditioner at the rates of 2 m^{3} /Fed and control were distributed in the sub-plots and foliar application of glycine betaine was used at 2 mM/L, potassium silicate was used at 0.5 g /L and control (sprayed with distilled water) were devoted in the subsub plots. Irrigation treatments were started after six weeks from planting, foliar application of glycine betaine and potassium silicate started after 50 days and repeated for 6 times at 15 days intervals Results indicated that the irrigation after depletion of 55-60% available soil water with applying soil conditioner and foliar application of glycine betaine or potassium silicate increased the bulb fresh weight, leaf fresh weight, plant length, leaf area and leaf chlorophyll reading of garlic as well as the yield of bulbs, cloves fresh weight/bulb, cloves number/bulb, bulb diameter, Neck diameter, bulbing ratio, average clove weight, nitrogen content, protein and total carbohydrates content. While, prolin content, catalase activity, total soluble solids, ascorbic acid, phenols and total sugars were significantly increased as a result of irrigation after depletion of 85-90 % available soil water without applying soil conditioner. therefore, it was

concluded that vegetative growth, yield and chemical analyses of garlic responded positively to increased available soil water with additionally soil conditioner and foliar application of 2 mM/L glycine betaine or 0.5 g/L potassium silicate.

Key words: Garlic, Water stress, Soil conditioner, Glycine betaine, Potassium silicate, Yield.

CONTENTS

Page

LIST OF TABLES	iii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of water stress	3
2.2. Effect of soil conditioner	19
2.3. Effect of glycine betaine	25
2.4. Effect of potassium silicate	31
3. MATERIALS AND METHODS	41
4. RESULTS AND DISCUSSION	48
4.1. Vegetative growth characters	48
4.1.1. Plant length after 120 days from planting	48
4.1.2. Plant length after 150 days from planting	51
4.1.3. Bulb fresh weight after 120 days from planting	53
4.1.4. Bulb fresh weight after 150 days from planting	55
4.1.5. Bulb dry weight after 150 days from planting	57
4.1.6. Leaf fresh weight after 120 days from planting	60
4.1.7. Leaf fresh weight after 150 days from planting	62
4.1.8. Leaf dry weight after 150 days from planting	64
4.1.9. Leaves number per plant after 120 days from planting	67
4.1.10. Leaves number per plant after 150 days from planting	69
4.1.11. leaf area after 120 days from planting	71
4.1.12. leaf area after 150 days from planting	73
4.1.13. Bulb diameter after 120 days from planting	75
4.1.14. Bulb diameter after 150 days from planting	77
4.1.15. chlorophyll reading after 120 days from planting	80
4.1.16. chlorophyll reading after 150 days from planting	82
4.2. Yield and its components	84
4.2.1. Total cured yield	84

4.2.2. Bulb fresh weight	87
4 2 3 Bulb diameter	88
4.2.4. Neck diameter	91
4.2.5. Bulbing ratio	93
4.2.6. Cloves fresh weight/bulb	95
4.2.7. Cloves dry weight/bulb	98
4.2.8. Cloves number/bulb	100
4 2 9 Average clove weight	103
4 2 10 Cloves dry matter percentage/bulb	104
4 2 11 Outer cloves number/bulb	106
4.3 Chemical composition	109
4 3 1. Total free amino acids	109
4 3 2 Total soluble solids	111
4 3 3 Free Proline content	114
4 3 4 Total sugars	116
4.3.5 Ascorbic acid	119
4 3 6 Total soluble phenols	121
4.3.7 Catalase activity	121
4.3.8 Total carbohydrates	124
4.3.9 Total nitrogen	120
4.3.10 Phoenhorus	12)
4.3.10. Phosphorus	131
5 SUMMADY AND CONCLUSION	134
6 DEEEDENCES	13/
	144
ΑΚΑΒΙΟ ΣυΜΜΑΚΥ	1

LIST OF TABLES

Table		Page
a .	Field capacity, wilting point and available soil water of	
	the experimental soil in the two seasons of 2013 and	
	2014	42
1.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on plant length (cm) of	
	garlic after 120 days from planting	49
2.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on plant length (cm) of	
	garlic after 150 days from planting	52
3.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on bulb fresh weight	
	(g) of garlic after 120 days from planting	54
4.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on bulb fresh weight	
	(g) of garlic after 150 days from planting	56
5.	Effect of Effect of irrigation after the depletion of	
	different percentages of available soil water depletion,	
	soil conditioner and foliar application of potassium	
	silicate (K ₂ Sio ₃) or glycine betaine (GB) on bulb dry	
	weight (g) of garlic after 150 days from planting	58
6	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	

conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on leaf fresh weight (g) of garlic after 120 days from planting.....

8 Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on leaf dry weight (g) of garlic after 150 days from planting.....

9 Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on plant leaf number/ plant of garlic after 120 days from planting.

- Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on leaf area (cm²) of garlic after 120 days from planting.....
- Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on leaf area (cm²) of

68

72

65

garlic after 150 days from planting..... 74

- 13. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Bulb diameter (cm) of garlic after 120 days from planting.....
- 14. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Bulb diameter (cm) of garlic after 150 days from planting..... 78
- 15. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Chlorophyll reading(SPAD) of garlic after 120 days from planting.....
- 16. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB)on Chlorophyll reading (SPAD) of garlic after 150 days from planting..... 83
- 17. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Total cured yield (ton) of garlic.....
- 18. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on bulb f. weight (g) of 89 garlic.....
- 19. Effect of irrigation after the depletion of different

76

81

percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Bulb diameter (cm) of garlic.....

90

92

94

96

102

20. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Neck diameters (cm) of garlic.....

- Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Bulbing ratio of garlic.....
- 22. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Cloves F.W. (g) of garlic.....
- 24. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on N. of Cloves /bulb of garlic.....
- 25. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate

vi

	(K ₂ Sio ₃) or glycine betaine (GB) on Average Clove W.	104
26	Effect of irrigation after the depletion of different	
20.	percentages of available soil water depletion soil	
	percentages of available son water depiction, son	
	(K Sig.) or glucing betains (CP) on Cloves dry metter	
	(K_2SIO_3) of glycine became (GB) on Cloves dry matter	106
27	Effect of imigation often the doubtion of different	100
27.	Effect of infigation after the depletion of different	
	percentages of available soil water depiction, soil	
	conditioner and ionar application of potassium sincate (K, S) as a basis battering (CP) as a state above such as	
	(K_2S_{103}) or glycine betaine (GB) on outer cloves number	100
20		108
28.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K_2Sio_3) or glycine betaine (GB) on Amino acid (g/100g	
	D.W) of garlic	111
29.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on Total soluble solids	
	of garlic	113
30.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on proline content	
	(µmol/100g FW) of garlic	116
31.	Effect of irrigation after the depletion of different	
	percentages of available soil water depletion, soil	
	conditioner and foliar application of potassium silicate	
	(K ₂ Sio ₃) or glycine betaine (GB) on Total sugars	
	(g/100g D.W) of garlic	118

- (g/100 g F.W) of garlic..... Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Total soluble phenol (g/100g D.W) of garlic..... Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Catalase activity (g /sec) of garlic..... Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on total carbohydrates (g/100g D.W) of garlic..... Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Nitrogen content (%) of garlic..... 37. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate (K₂Sio₃) or glycine betaine (GB) on Phosphorus content (%) of garlic..... Effect of irrigation after the depletion of different 38. percentages of available soil water depletion, soil
- 32. Effect of irrigation after the depletion of different percentages of available soil water depletion, soil conditioner and foliar application of potassium silicate ((K₂Sio₃) or glycine betaine (GB) on Ascorbic acid
- 33. 123
- 34. 126
- 35. 128
- 36.

- 131
- 133

conditioner and foliar application of potassium silicate	
(K2Sio3) or glycine betaine (GB) on protein content %	
of garlic	136