Menoufia University Faculty of Agriculture Shebin El-Kom Department of Pesticides

حامعة المنوفية كليـة الزراعـة بشبين الكوم قسم مبيدات الآفات

Comparative Study On Some Different Spraying

Techniques To Control Onion Thrips

(Thrips tabaci Lind. [Thysanoptera: Thripidae])

A Thesis Submitted in partial fulfillment of the requirements for The Master Degree (Pesticides)

Prepared by: Ahmed Abd Allah Eita Bachelor's degree in Agriculture (2007) Department of Agricultural Engineering, Pesticides Diploma (2016) Department of Pesticides

Supervised by:

Prof. Dr.

Prof. Dr.

Ibrahim Mahmoud Ammar

Emeritus professor- Department of Pesticides- Faculty of Agriculture-

Menoufia University

Abd Al-Mageed El-Sayed Ammar Professor - Pesticide Application Department of spraying Technology plant protection research Institute-Ministry of Agriculture

CONTENTS

Content		Page
1-	Introduction	1
2-	REVIEW OF LITERATURE	
	2.1 Onion thrips	3
	2.2 Insecticides	9
	2.3 Electrostatic sprayers	12
	2.4 Air-assisted sprayers	16
	2.5 Drift	17
	2.6 Spinning disc sprayer and rotary atomizers	19
	2.7 Hydraulic sprayers	23
	2.8 Physical properties of liquid and droplets spectrum	28
	2.9Application techniques used for controlling piercing-	30
	sucking insects.	
	2.10 Influence of climatic conditions on application technique.	35
3-	Material and methods	
	3.1 The tested compounds	40
	3.2 Spraying equipment tested on onion field	42
	3.2.1.1 Knapsack sprayer blower (AGRIMONDO) with shear	42
	nozzle	42
	3.2.1.2 Knapsack electrostatic sprayer (Spectrum electrostatic	
	3010 head)	43
	3.2.1.3 Rotary hand held sprayer (Spinning-disc, MATABI)	43
	3.2.1.4 Knapsack sprayer hydraulic hand held (MATABI)	44
	3.2.1.5 Conventional ground motor sprayer with spray gun	
	(Wisconson) ground motor	48
	3.3 Calibration and performance adjustment of the tested	51
	equipment	54

	3.4 Execution of field experiments	55
	3.5 Bioassay procedure	55
	3.6 Calculations and data analysis	55
	3.7 Estimation of the coefficient of onion curling	58
	3.8 Calibration and performance adjustment of the tested	59
	equipment	
	3.9 Collection and measurement of spray drift	
	3.10 Data analysis	
4-	Results and Discussions	
	4.1 Calibration and performance evaluation of certain ground	59
	sprayers laboratory conditions by using water under lab.	
	Conditions.	66
	4.2 Coefficient of curling of onion plants	68
	4.3 First season experiment 2017	73
	4.4 Second season experiment 2018	75
	4.5 Spray quality of droplets spectrum of certain ground	
	sprayers sprayed onion crop against Thrips pest.	89
	 4.6 Bio residual activity of Marshal® and Chinook® recommended and ³/₄ recommended dose on <i>Thrips tabaci</i> lind. On onion crop during season 2108. 4.7 Drift spray measurements for certain equipment under field 	
	conditions during season 2108	100
	5. Biological examination	104
	6. Statistical analysis	108
	7. Coefficient of correlation and regression (2018)	117
5-	Conclusion	132
6-	Summary	134
7-	REFERENCES	138
8-	الملخص العربي	

CONTENTS TABLE

Content	
Table (1): Techno- operational data of some ground applicationtechniques used against controlling (<i>Thrips tabaci lind.</i>) on onion cropduring season 2017.	50
Table (2): Droplet sizes and its number sheet analysis of droplets.	54
Table (3): Techno- operational data of some ground applicationtechniques used against controlling <i>T.tabaci</i> On onion crop during season2018.	57
Table (4): Flow rates tests by knapsack motor sprayer (Agrimondo) [®] withnormal nozzle with different position of spray hose directions and differentflow numbers (L /min) during 2017.	59
Table(5): Watery swath width averages of knapsack motor sprayer (Agrimondo) [®] with normal unit shear nozzle and electrostatic unit at hose spray position 45° down under laboratory conditions by using sensitive paper during Jan.(2017).	61
Table(6): The relationship between hours and both of R.P.M of motorsprayer and spray deposits to spinning disc, MATABI with 4 large sizebatteries on sensitive cards under laboratory conditions.	62
Table (7): Illustrated the relationship between the different two restrictors,flow rate spray deposits and cards position of Matibi rotary sprayer undersemi field condition.	63
Table (8): Illustrated the watery swath width experiment to Matabihydraulic sprayer under laboratory conditions by using sensitive paper.	65
Table (9): Actual on measurements were taken from onion samples.	67
Table (10) : Distribution droplets of Marshal insecticide by using certainground equipment, against <i>T.tabaci</i> on onion field during season 2017.	70
Table (11): Relationship between spray coverage of certain groundequipment and reduction percentages of onion <i>thrips T.tabaci</i> sprayed by	71

Marshal insecticides during season 2017.	
Table (12): Relationship between deposit on plant, lost spray on ground	74
and lost spray by drift for sprayer equipment during season 2018.	/4
Table (13): Percentage of spray mass	75
Table (14) a : Distribution droplets of Marshal recommended dose by	
using certain ground equipment, plant deposition, lost spray on ground and	77
drift spray on air during season 2018.	
Table (14) b: Distribution droplets of Marshal ³ / ₄ recommended dose by	
using certain ground equipment, plant deposition, lost spray on ground and	77
drift spray on air during season 2018.	
Table (15) a : Distribution droplets of Chinook recommended dose by	
using certain ground equipment, plant deposition, lost spray on ground and	78
drift spray on air during season 2018.	
Table (15) b: Distribution droplets of Chinook ³ / ₄ recommended dose by	
using certain ground equipment, plant deposition, lost spray on ground and	78
drift spray on air during season 2018.	
Table (16): Relationship between deposits on plant, lost spray on ground	
and lost spray by drift by using Marshal recommended dose by certain	81
ground equipment during season 2018.	
Table (17): Percentages of spray mass on the plant, lost spray on ground	
and the drift by using Marshal recommended dose by certain ground	81
equipment during season 2018.	
Table (18): Relationship between deposit on plant, lost spray on ground	
and lost spray by drift by using Marshal ³ / ₄ recommended dose by certain	83
ground equipment during season 2018.	
Table (19): Percentages of spray mass on the plant, lost spray on ground	
and the drift by using Marshal 3/4 recommended dose by certain ground	83
equipment during season 2018.	
Table (20): Relationship between deposit on plant, lost spray on ground	85
and lost spray by drift by using Chinook recommended dose by certain	00

101 104 105
101
<i>)</i>
97
15
95
74
94
92
02
91
0.1
87
_
87
85
-

CONTENTS FIG

Content	Page
Fig (1) Chemical structure for Marshal 25 % WP	40
Fig (2) Chemical structure for Chinook 35% SC.	41
Fig (3) Knapsack sprayer blower (AGRIMONDO) with normal unit	45
to spray with pneumatic spraying technique.	
Fig (4) Spectrum electrostatic 3010 head modified unit to spray	45
electrostatic technique.	
Fig (5) Spectrum electrostatic 3010 head replaced on head of the	45
knapsack sprayer K100 to spray electrostatic technique.	
Fig (6) Rotary hand held sprayer (with spinning disc, MATABI) with	46
4 large batteries $(1.5 \text{ V}) \times 4 = 6 \text{ Volts.}$	
Fig (7) Knapsack sprayer hydraulic hand held (MATABI) with tank	46
capacity 20 L. and 5 bar pressure.	
Fig (8) Nozzle types, 4 holes hollow cone nozzles connected to the	47
hydraulic hand held (MATABI) sprayer.	
Fig (9) Conventional ground motor sprayer with spray gun	47
(Wisconson) with tank capacity 600 liters.	
Fig (10) Sensitive water Cards on onion plants.	52
Fig (11) The hand lens (Struben) [®] field.	53
Fig (12) The relation ship between hours and both of R.P.M of motor	63
sprayer and spray deposits to spinning disc, MATABI with 4 large	
size batteries on sensitive cards under laboratory conditions	
Fig (13) The relationship between the different two restrictors, flow	64
rate spray deposits and cards position of Matibi rotary sprayer under	

semi field condition	
Fig (14) The watery swath width for matabi hydraulic under	65
laboratory condition.	
Fig (15) Thrips tabaci on onion leaves.	65
Fig (16). Model of full-grown plant of onion (<i>Alliume cepa</i> L.)	67
Fig (17):- Relationship of reduction percentages and different	72
spraying volume of certain ground equipment during season 2017.	
Fig (18):- Relationship between percentage reduction means	72
and distribution coverage of certain ground equipment during season	
2017	
Fig (19) Percentages of spray mass on the plant, lost spray on	82
ground and the drift by using Marshal recommended dose by certain	
ground equipment during season 2018.	
Fig (20) Percentages of spray mass on the plant, lost spray on	84
ground and the drift by using Marshal ³ / ₄ recommended dose by	
certain ground equipment during season 2018.	
Fig (21) Percentages of spray mass on the plant, lost spray on ground	86
and the drift by using Chinook recommended dose by certain ground	
equipment during season 2018	
Fig (22) Percentages of spray mass on the plant, lost spray on ground	88
and the drift by using Chinook 3/4 recommended dose by certain	
ground equipment during season 2018.	
Fig (23) Relationship of reduction percentages and different spraying	93
volume of certain ground equipment for insecticides Marshal	
recommended dose during season 2018.	
Fig (24) Relationship of reduction percentages and different spraying	94
volume of certain ground equipment for insecticides Marshal 3/4	
recommended dose during season 2018.	

Fig (25) Relationship of reduction percentages and different spraying	96
volume of certain ground equipment for insecticides Chinook	
recommended dose during season 2018.	
Fig (26) Relationship of reduction percentages and different spraying	97
volume of certain ground equipment for insecticides Chinook ³ / ₄	
recommended dose.	
Fig (27) Relationship between percentage reduction means and	98
distribution coverage of certain ground equipment for insecticides	
Marshal recommended dose during season 2018.	
Fig (28) Relationship between percentage reduction means and	98
distribution coverage of certain ground equipment for insecticides	
Marshal 3/4 recommended dose during season 2018.	
Fig (29) Relationship between percentage reduction means and	99
distribution coverage of certain ground equipment for insecticides	
Chinook recommended dose during season 2018.	
Fig (30) Relationship between percentage reduction means and	99
distribution coverage of certain ground equipment for insecticides	
Chinook 3/4 recommended dose during season 2018.	
Fig (31-36) Drift spray.	102

Summary

A. Laboratory evaluation of spraying techniques :-

A major importance of the present work was the evaluation of four sprayers under laboratory and field conditions in comparison with conventional motor sprayer.

Laboratory data on spray parameters showed that flow rate significantly varies depending on the type of machine tested. Such difference may be attributed to either drift loss, very fine droplets produced or meeting of such fine droplets with bard surfaces at variable spray heights.

The present study also revealed that the effect of air charging with electrostatic forces, centrifugal energy and hydraulic energy is significantly correlated with the flow rate, droplet formation and droplet distribution in case of knapsack motor sprayer Agrimondo with shear nozzle, knapsack motor sprayer Agrimondo with electrostatic unit, rotary spinning sprayer Matabi, hydraulic Matabi sprayer and conventional ground motor sprayer. Similar results have been reported by **Burt and Smith (1974), Fraser and Exisenklam (1956) and Hindy et al. (1991).**

A rotary spinning disc Matabi in laboratory can be treated as a demonstration of the rotary atomizers pattern through using a narrow restrictor. Also, the results demonstrated the relationship between working hours and both R.P.M and spray deposits on watery sensitive cards. The daily working hours of this sprayer depends on the type of battery, the physical properties of the spray solution used (viscosity, and surface tention), and the ambient climatic conditions. The proper spray height for Matabi spinning disc was 0.5m, as recommended at the present time. Both the tested rotary normal pneumatic atomizers and pneumatic atomizer with electrostatic unit produces a rich number of fine droplets. With using spray gun and hydraulic Matabi sprayer as hydraulic nozzles

because of successive falling of operating pressure during spraying operation and the low quality of the used nozzles.

Data showed that increasing flow rate of pneumatic motor sprayer is more valuable in case of full tank capacity than half tank capacity at three air hose positions: vertical, upper 45° and down 45°. The flow rate of pneumatic sprayer depends on amount of air pressured on liquid surface, the gravity and the r.p.m of motor sprayer. All these factors affect flow rate values besides the physical properties of the liquid used. Also, swath width of pneumatic motor sprayer depends on the r.p.m motor, physical properties of sprayed solution and the ambient climatic conditions during execution of the test. According to the spray deposits quality, the tested atomizers can be arranged in a descending order from the best to the worst as follows:

1-Rotary spinning disc Matabi sprayer (18 L/fed)

2- Knapsack motor sprayer Agrimondo with charging unit (42 L/fed)

3- Knapsack motor sprayer Agrimondo with shear nozzle (79 L/fed).

4- Hand held hydraulic Matabi sprayer (56 L/fed).

5- Conventional ground motor sprayer (578 L/fed).

B. Field evaluation of the spray technique

B.1. First season experiment (2017)

The spray bulk produced by five spraying techniques was evaluated depending on satisfactory spray coverage on target plants as well as lost spray on the ground between plants. It should be taken into consideration that the drift spray counts were not included in this study.

The best equipment saving lost spray on ground, is electrostatic Agrimondo sprayer with 15.6% lost spray. The worst equipment is the conventional ground motor sprayer with 44.6% lost spray on ground. Data confirmed that there is a positive relationship between rate of application and the spray lost on ground between the treated plants. Also, 20% of the droplets were deposited on the lower surfaces of knapsack motor sprayer with electrostatic unit.

Spray homogeneity resultant from the tested equipment can be arranged in a descending order from the best to the worst as follows, a knapsack motor sprayer with charging unit, knapsack motor sprayer with normal unit, Rotary spinning disc Matabi sprayer, hand held hydraulic Matabi sprayer and conventional ground motor sprayer. However, from a conventional view, the equipment's can be arranged in a descending order as follows, knapsack motor sprayer Agrimondo with electrostatic unit and with normal unit 11.6 fed/day for both of them, conventional ground motor sprayer 4.4 fed/ day hand held hydraulic Matabi sprayer 3.4 fed/day and rotary Matabi spinning disc sprayer 2.3 fed/day.

B. 2. Bioresidual activity of Marshal on *thrips tabaci lind***. on onion crop during 2017 season**

Bio residual data showed that, the best efficiency of Marshal with high value of reduction percentages was produced by knapsack motor sprayer Agrimondo with charging unit, followed by knapsack motor sprayer with normal unit, handheld hydraulic Matabi sprayer conventional ground motor sprayer and Matabi rotary (spinning disc) sprayer. The optimum droplet spectrum for controlling (*thrips tabaci* lind.) on onion crop must be at least 250droplets/cm² with an average droplet size of 50µm (VMD) to produce satisfactory control.

B. 2. Second season experiment (2018)

B. 2. 1. Spray quality

Similar results were obtained using two insecticides with recommended and ³/₄ recommended dose using the same five tested spraying techniques. So, data on satisfactory spray coverage, lost spray on ground between plants and drift spray outside the treatment with downwind were collected. Data showed that electrostatic Agrimondo

sprayer produces the ideal spray quality on onion crop, the highest reduction of lost spray on ground (15.6%) and the least spray drift outside the treatment. The worst equipment is the conventional ground motor sprayer with 44.6% as lost spray on ground due to big droplets, amount of water and the high operational pressure used.

B.2.2. Bio residual activity of certain insecticides against *thrips on* onion crop during 2018 season 2018

Data showed that, there is a relationship between decreasing droplet sizes (VMD) and increasing number of on the efficiency of insecticides used against Thrips on onion. It must be controlled with low volume spraying machines ranging from 18-42 L/fed. That can be accomplished through using electrostatic and pneumatic energy or both of them or by using centrifugal energy by spinning disc sprayer. The worst quality spray and poor efficiency of bio residual activity of insecticides sprayed is produced through using hydraulic energy through ground motor spray or hand held hydraulic spray.

Data also showed that there are no significant differences between recommend doses and ³/₄ recommend doses with recent equipment. That can save 25% of the insecticides prices used in controlling Thrips and saves agricultural environment from pollution.

On the other side, we found that there is no significant differences between initial spraying after 24 hours and residual spraying after spraying 7 days and 12 days by recent sprayer and hydraulic Matabi sprayer.

Also, electrostatic sprayer showed the lowest drift spray results, but the biggest drift spray results were produced by rotary Matabi spinning disc.