Abstract

An attempts aimed to join the good efforts of the team of biological control being done in Egypt for controlling the lepidopterous pest *S. littoralis*, 11 *B. thuringiensis* isolates have been isolated from different governorates in Egypt, subjected to characterization and identification by bioassay and PCR technology, using universal and specific primers to predict the presence of the cryIAc gene. Plasmid and RFLP patterns have been made to the isolates that have been reacted positively with bioassay and PCR to offer a characteristic fingerprint for the *B. thuringiensis* isolates of interest.

The insectillcidal crystal protein gene cryIAc from field collected isolate *B. thuringiensis* K₁, was cloned into pUC 19 vector, a library was constructed and the clone of interest was detected using non-radio active labeled digoxigenin oligonucleotide– probe specific for cryIAc gene.

Pages

5		0		
Ρ	re	ta	c	P
۰.	10		÷	•

Acknowledgment	
Abstract	
Introduction	1
CHAPTER I: Review of Litreature	
I.1. Isolation and identification of B. thuringiensis.	4
I.2. Insecticidal activity of B. thuringienisis.	11
I.3. Mode of action of <i>B. thuringiensis</i> δ endotoxin.	14
I.4. Molecular Biology techniques.	20
I.4.1. Polymerase chain reaction of B. thuringiensis	
δendotoxin.	21
I.4.2. B. thuringiensis gene cloning.	35
I.4.3. Sequencing of B. thuringiensis Sendotoxin	
cryIAc gene.	43
I.5. Wide spectrum use of B. thuringiensis isolates	
against some insects.	45
CHAPTER II: Materials and Methods	
II.1. I solation and identification of B. thuringiensis.	50
II.2. Biotoxicity assay.	53
II.3. Polymerase chain reaction (PCR).	55
II.3.1. Preparation of DNA template.	
II.3.2. Polymerase chain reaction.	
II.3.3. Agarose gel electrophoresis.	58
II.3.4. Examination of the gel.	60
II.3.5. Photography of the gel.	

YY 4	751	* *	17	
11.4.	Plas	smid	profi	lle.

TT A 1	TT		0.1		
11/11	1973	locting.	ot I	Root	OPTO
11.7.1.	1101	CSUIIZ	01.1	Dau	ena.
		0			

II.4.2. Lysis of Bacteria.

II.5. Restriction Fragment Length Polymorphism(RFLP).	63
II.5.1. Restriction digestion of DNA using EcoRI.	
II.5.2. Restriction digestion of DNA using Hind III.	
II.6. Cloning.	64
II.6.1.Preparation of E.coli competent cells.	66
II.6.2. Transformation using pUC 19 vector ligation reaction	n. 67
II.7. Labelling of oligonucleotides with digoxigenin -d.d.UT	P. 68
II.7.1.Oligonucleotide 3-end labeling.	69
II.8. Analysis of DNA by southern hybridization.	70
II.9. Detection of digoxigenin- labeled nucleic acids by enzy	me
immunoassay and enzyme catalyzed color reaction.	73
II.10. DNA sequencing techniques.	75
II.10.1. Template preparation.	76
II.10.2. Automated cycle sequencing.	77
CHAPTER III: Results.	
III.1. Efficacy of different B.thuringiensis isolates	
against the 2 nd instar larvae of S. littoralis.	85
III.2. Polymerase chain reaction (PCR).	87
III.2.1.PCR with universal primers.	88
III.2.2.PCR with specific primers.	88
III.3. Plasmid profile.	106
III.4. Restriction fragment length polymorphism	
(RFLP) using EcoR I.	106

III.5. Restriction fragment length polymorphism	
(RFLP) using Hind III.	107
III.6. Restriction map and multiple cloning sites	
of the DNA molecule of the cloning plasmid	
vector (pUC-19).	124
III.7. Identification and selection of transformed	
bacterial colonies.	126
III.8. Detection of the transformed bacterial	
colonies containing the gene of interest.	128
III.9. The nucleotide sequence of 277bp segment of	130
cryIAc gene	
CHAPTER III: Discussion.	
IV.1. Efficient isolation of soil Bacillus Sp.	134
IV.2. Identification by Bioassay.	135
IV.3. Identification by polymerase chain reaction (PCR).	136
IV.4. Plasmid pattern.	139
IV.5. Restriction fragment length polymorphism	
(RFLP) pattern.	140
IV.6. Molecular cloning and sequencing	142
of cryIAc gene	
Summary	146
Refrences	148

Arabic Summary

List of abbreviation

А	Adenine
A	Agrobacterium
B.t	Bacillus thuringiensis
Bp	Base pair
BSA	Bovin serum albumin
CaCl ₂	Calcium chloride
Cry	Crystal
С	Cytosine
DATP	Deoxy adenine triphosphate
DCTP	Deoxy cytosine triphosphate
DGTP	Deoxy guanine triphosphate
DNase	Deoxy nuclease
DNTP	Deoxy nucleoside triphosphate
DNA	Deoxy ribonucleic acid
DTTP	Deoxy thiamine triphosphate
DIG	Digoxigenin
DIG-ddVTP	Digoxigenin labeled dideoxyuridine triphosphate
d.d	Double distilled
DsDNA	Double stranded deoxynucleic acid
EDTA	Ethylene diamine tetraacetic acid
G	Gram
G	Guanine
HC1	Hydrochloric acid
ICP	Insecticidal crystal protein
IPTG	Isopropyl thio-β-D-galactoside
Kb	Kilo base
KCl	Potassuim chloride
KDa	Kilo dalton
LB	Luria bretani
MgCl ₂	Magnesium chloride
MnCl ₂	Manganese chloride
М	Molar
Mw	Molecular weight
NaCl	Soduim chloride

NaOH	Soduim hydroxide
OD	Optical density
PCR	Polymerase chain reaction
<i>P</i> .	Pseudomonas
Rf	Relative front
RFLP	Restriction fragment length polymorphism
RPM	Revolution per minute
RNase	Ribo nuclease
SSC	Saline soduim citrate Buffer
Sm	Small
SDS	Soduim dodecyl sulphate
S. littoralis	Spodoptera littoralis
Taq	Thermus aquaticus
Т	Thiamine
TAE	Tris-acetate-EDTA-Buffer
TE	Tris-EDTA
Tris	2-amino-2-(hydro xymethyl)-1.3-propane dial
UV	Ultra violet
W\V	Weight per volume
x-gal ·	S-bromo-4-chloro-3-indolyl-β-D-galacto-pyranoside