

Faculty of Agriculture (Saba Basha) Department of Food Science

DEVELOPMENT OF EDIBLE ACTIVE COATINGS FROM NATURAL SOURCES FOR EXTENDING THE SHELF LIFE OF SOME PREPARED FRESH FRUITS

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy

In

Food Technology

Submitted by

Osama Mohamed Mabrouk Ataalla Elsheikh

B.Sc. in Food Technology, Faculty of Agriculture (Damnhor), Alexandria University Year 2002

M.Sc. in Food Science and Technology, Faculty of Agriculture (El-Shatby), Alexandria University Year 2014

2020

TABLE OF CONTENTS		
Title	Page	
TABLE OF CONTENTS	Ι	
LIST OF TABLES	IV	
LIST OF FIGURES	V	
LIST OF ABBREVIATIONS	VI	
ABSTRACT	VIII	
CHAPTER 1	1	
1. INTRODUCTION AND AIMS OF THE STUDY	1	
CHAPTER 2	3	
2. REVIEW OF LITERATURE	3	
2.1. Fresh fruits and health	3	
2.2. Prepared fresh fruits	3	
2.3. Minimally processed fresh-cut products	4	
2.3.1. Physiological and biochemical changes	4	
1.3.1.1. Softening (texture changes)	4	
2.3.1.2. Color changes	5	
2.3.2. Microbiological contamination	5	
2.3.3. Preservation technologies	5	
2.3.3.1. Edible coatings and films	5	
2.3.3.1.1. Edible coating materials	6	
2.3.3.1.2. Edible coatings and films production	10	
2.3.3.1.3. Edible coating and film function	10	
2.3.3.1.3.1. Barrier functions	11	
2.3.3.1.3.2. Mechanical properties	12	
2.3.3.1.3.3. Carrier properties	12	
2.3.3.1.3.4. Edible coating and film application	12	
CHAPTER 3	15	
3.MATERIALS and METHODS	15	
3.1. Materials	15	
3.1.1. Fruits	15	
3.1.2. Pectin	15	
3.1.3. Chemicals	15	
3.1.4. Microorganisms	16	
3.1.5. Packaging materials	16	
3.2. Methods	16	
3.2.1. Preparation of pomegranate fruit parts	16	
3.2.2. Ethanolic extraction of pomegranate fruit parts	17	
3.2.2.1. Total phenolic content	18	
3.2.2.2. Total flavonoid content	18	
3.2.2.3. Ttotal anthocyanin content (TA)	18	

3.2.2.4. HPLC identification of phenolic and flavonoid compounds	18
3.2.2.5. Determination of antioxidant activity	19
3.2.2.5.1. Scavenging activity by DPPH assay	19
3.2.2.5.2. ABTS ⁺ scavenging activity	19
3.2.2.5.3.Ferric-reducing antioxidant power (FRAP)	19
3.2.2.6.Antimicrobial activity	20
3.2.2.6.1. Minimum inhibitory concentration (MIC)	20
3.2.3. Preparation of pectin based edible film	20
3.2.3.1. Forming solution	20
3.2.3.2. Film production	21
3.2.4.Film characterization	21
3.2.4.1. Thickness	21
3.2.4.2.Moisture content	21
3.2.4.3.Solubility in water	22
3.2.4.4.Water vapor permeability (WVP)	22
3.2.4.5. Gas Permeability	22
3.2.4.6. Mechanical properties	23
3.2.4.7.Microstructure	23
3.2.4.8. Fourier transforms infrared (FTIR) spectroscopy	23
3.2.4.9. Bioactive compounds and antioxidant activity	23
3.2.4.10.Antimicrobial activity	23
3.2.5. Preparation of coated fresh cut apple and mango fruits	24
3.2.5.1. Preparation of fresh cut fruits	24
3.2.5.2. Coating procedure	24
3.2.6. Quality attributes of fresh cut fruits	24
3.2.6.1. Weight loss	24
3.2.6. 2. Firmness	24
3.2.6.3. pH value	24
3.2.6. 4. Total soluble solids (TSS)	24
3.2.6. 5. Color	25
3.2.6.6.Microbiological evaluation	25
3.2.7. Sensory evaluation	25
3.2.8. Statistical analysis	25
CHAPTER 4	26
4. RESULTS AND DISCUSSION	26
4.1. Pomegranate fruit extract.	26
4.1.1. Weight of fruit parts	26
4.1.2. Bioactive compounds	26
4.1.3. Identification of phenolics and flavonoids in the ethanolic extracts of	28
pomegranate fruit parts.	

4.1.4. Antioxidant activity	29
4.1.5.Antimicrobial activity of ethanolic extract of pomegranate fruit parts (AE,	
RE and PE)	
4.2.Eedible active film	36
4.2.1.Physical characteristics	36
4.2.1.1. Thickness	36
4.2.1.2.Moisture content	37
4.2.1.3. Water solubility	37
4.2.1.4. Permeability characteristics	38
4.2.1.4.1.Water vapour permeability	38
4.2.1.4.2.Oxygen permeability	39
4.2.1.4.3.Carbon dioxide permeability	39
4.2.2.Mechanical properties	40
4.2.3.Scanning electron microscopy (SEM)	41
4.2.4. Fourier-transform infrared (FTIR) spectra	43
4.2.5.Antimicrobial activity	45
4.2.6.Bioactive compounds and antioxidant activity	46
4.3. Quality attributes of fresh cut apple and mango fruits coated with pectin film based PE	47
4.3.1. Physicochemical attributes	47
4.3.1.1.Weight loss	47
4.3.1.2.Total soluble solids	49
4.3.1.3.pH value	51
4.3.1.4. Firmness	53
4.3.1.5. Color change	55
4.3.2.Microbial analysis	57
4.3.3. Sensory evaluation	59
CHAPTER 5	61
5.SUMMARY AND CONCLUSION	61
CHAPTER 6	65
6.REFERENCES	65
ARABIC SUMMARY	1

	LIST OF TABLES	
No.	Title	Page
1	Pectin edible coatings developed to be used on some fruits	8
2	Some active compounds incorporated into edible coatings and films	13
3	Application of edible coating used on fresh-cut fruits	14
4	Total phenolics, flavonoids and anthocyanins content of the ethanolic extract of pomegranate fruit parts	27
5	Identification of phenolics and flavonoids in the ethanolic extract of pomegranate fruit parts (μg /g dw)	28
6	Antioxidant activity of the ethanolic extract of pomegranate fruit parts	45
7	The MIC of pomegranate fruit parts ethanolic extracts and it's diameter inhibition zone	34
8	Thickness, moisture and solubility of the prepared pectin films	36
9	Permeability characteristics of the prepared pectin films	38
10	Tensile strength and Elongation-at-break of the different pectin films	40
11	Antimicrobial activity of pectin –based edible films	45
12	Total Phenolics, total flavonoids content and antioxidant activity of prepared films	46
13	Effect of coating treatments on weight loss (%) of fresh-cut apple and mango fruits during storage at 4° C	47
14	Effect of coating treatments on % of total soluble solids (TSS) of fresh-cut apple and mango fruits during storage at 4° C	49
15	Effect of coating treatments on pH value of fresh-cut apple and mango fruits during storage at 4° C	51
16	Effect of coating treatments on firmness of fresh-cut apple and mango fruits during 12 days of storage at 4°C	53
17	Effect of pectin edible coating with or without PE on L^* , a^* and b^* of fresh cut apple and mango fruits during storage at 4°C	55
18	Effects of edible coating on total bacterial count (TC) and yeasts and molds count (Y&M) of fresh-cut apple and mango fruits during storage at 4 °C as log CFU g^{-1}	58
19	Mean scores of sensorial attributes of fresh cut apple and mango fruits during cold storage at 4°C	60

	LIST OF FIGURES		
No.	Title	Page	
1	Effect of cutting fruits and vegetable tissue over the shelf life of		
	fresh-cut fruits and vegetables	4	
2	Production steps of edible coating and film	10	
3	Functional properties of an edible coating on fresh fruits and		
	vegetables	13	
4	Pectin	15	
5	Pomegranate fruit parts	16	
6	Flow sheet of preparing pomegranate fruit parts powder	17	
	(Arils, rind and peel)		
7	Pectin coating solutions	20	
8	Pectin edible films	21	
9	Reducing power (FRAP) of ethanolic extracts of pomegranate fruit parts	31	
10	Antimicrobial activity of ethanolic extracts of pomegranate fruit parts against Gram-positive bacteria	32	
11	Antimicrobial activity of ethanolic extracts of pomegranate fruit parts against Gram- negative bacteria	33	
12	Antimicrobial activity of ethanolic extracts of pomegranate fruit parts against Yeast (<i>Candida albicans</i> ATCCMYA 2876).	35	
13	Scanning electron micrograph of pectin films showing the outer surface and cross-section	42	
14	FTIR spectrum of pectin edible film (control)	43	
15	FTIR spectra of pectin edible film with or without PE and RE	44	
16	Effect of coating treatments on weight loss (%) of fresh cut fruits during 12 days of storage period at 4°C	48	
17	Effect of coating treatments on % of total soluble solids (TSS) of fresh-cut fruits during 12 days of storage at 4° C	50	
18	Effect of coating treatments on pH of fresh-cut apple fruits during 12 days of storage at 4°C	52	
19	Effect of coating treatments on firmness of fresh-cut fruits during 12 days of storage at 4°C	54	
20	Effect of coating treatments on TCD of fresh-cut apple and mango fruits at the end of storage period at 4°C	56	
21	Appearance of cut fruits at the end of storage period (12 th day)	57	

ABSTRACT

Pomegranate fruit contains high content of phytochemical constituents which have many health benefits. This study aimed to evaluate the ethanolic extract of pomegranate fruit parts: arils, rind and peel as sources of bioactive compounds as well as their antioxidant and antimicrobial activities to be used as an active edible film. Results clearly demonstrated that peel extract (PE) had the highest content of total phenolics and flavonoids (342 mg GAE /g and 82.33mg catechol /g, respectively) followed by rind extract (RE) containing 213.00 mg GAE/g and 70.50 mg catechol /g, respectively, and finally arils extract (AE) (108.22 mg GAE /g and 55.58 mg catechol/g, respectively).Results indicated that total anthocyanins content was concentrated in PE (15.24mg Cynidian-3-glycoside/g) and AE (11.04 mg Cynidian-3glycoside/g), while RE had the lowest value (6.51 mg Cynidian-3-glycoside/g). Peel extract exhibited the highest antioxidant activity followed by RE and were significantly higher than that of AE. These results were confirmed with the DPPH and ABTS⁺ assays. Consequently, PE followed by RE had higher antimicrobial activity against several pathogenic strains than AE and can be used as natural preservative for food. Peel extract and RE were incorporated into pectin film at concentrations 7.5 and 15 mg/ml to develop an active edible film. Pectin film without the tested fruit parts extract was used as the control film. The obtained results revealed that these extracts caused an improvement in the barrier properties, mechanical properties and successfully developed and considered as an active edible film with antioxidant and antimicrobial properties. Based on our results, pectin edible coatings based PE can be used for extending the shelf life of fresh cut apple and mango fruits by delaying microbial spoilage and improve fruit quality.

Keywords: Pomegranate peel and rind, ethanolic extract, antioxidant and antimicrobiala activity, active edible film, barrier properties, mechanical properties.