

Agronomy Department

EFFECT OF PLANT DISTRIBUTION PATTERNS AND FOLIAR SPRAYING WITH SOME MATERIALS UNDER LATE PLANTING CONDITIONS ON COTTON PRODUCTIVITY

BY

BASEM WAGDY MOHAMED EL-SHAZLY

B. Sc. Agric. Sci., Fac. of Agric., Tanta Univ., 2012 M. Sc. Agric. (Agronomy), Fac. of Agric., Mansoura Univ., 2017

A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In

Agricultural Sciences (Agronomy)

SUPERVISORS

Dr. Usama A. Abd El- Razek

Prof. Dr. Moustafa A. Emara

Assistant Prof. of Agronomy, Faculty of Agriculture, Tanta University Head of Cotton Agronomy Section, Cotton Research Institute, Agricultural Research Center

Dr. Hanaa M. Ashry

Lecturer of Agronomy, Faculty of Agriculture, Tanta University

2020 A.D.

CONTENTS

Subject	page
INTRODUCTION	1
REVIEW OF LITERATURE	7
I. Effect of foliar feeding with nano Lithoit boron (CO ₂ fertilizer in the form of Lithovit (a nano-CaCO ₃) in addition to boron in the organic form)	7
I.1.Effects of CO ₂	7
I.2.Effects of boron	12
II. Effect of foliar spraying with Pix (mepiquat chloride)	16
III. Effect of plant distribution patterns	25
MATERIAL AND METHODES	32
RESULTS AND DISCUSSION	51
A. Leaves chemical composition	51
A.1.Leaves minerals content	51
a.1.1. Leaves macronutrients composition	51
a.1.2. Leaves micronutrients composition	58
A.2.Leaves concentration of photosynthetic pigments	63
A.3.Leaves concentration of total carbohydrates, total soluble	<u> </u>
sugars and non-soluble sugars	69
A.4.Leaves concentration of proline	83
B-Leaves water relations	87
B.1, 2 and 3. Leaves water fractions (free water, bound water and total water) content	87
B.4. Leaf water deficit (LWD)	90
B.5. Relative water content (RWC)	91
B.6. Osmotic pressure (O.P)	94
B.7. Plasma membrane permeability	95
C. Growth analysis	100
C.1.Leaves dry weight (g/plant):	101
C.2 and 3. Leaf area (dm ² /plant) and leaf area index	106
C.4.Total dry weight per plant	110
C.5 and 6. Specific leaf weight (SLW) and specific leaf area (SLA)	119
C.7 and 8. Leaf area ratio (LAR) and leaf weight ratio (LWR)	128
C.9. Crop growth rate	130
C.10. Net assimilation rate	132

C.11.Relative growth rate	135
D. Growth parameters	137
D.1, 2 and 3. Plant height at harvest (cm), number of	127
internodes/plant and internode length(cm)	137
D.4. Number of monopodial branches/plants	140
D. 5. Number of fruiting (sympodial) branches /plant	142
E. Earliness traits	144
E.1. First fruiting branch node	144
E.2. Number of days from planting up to the first flower	145
E.3. Boll maturation period (days)	149
E.4. Number of days from planting up to the first open boll	150
E.5. Averages number of total flowers per plant	151
E.6. Number of total bolls set per plant	152
E.7 and 8. Boll setting and shedding percentages	156
E.9. 1st picking percentage	159
F.Seed quality	162
F.1. Seed index	162
F.2. Number of seeds per boll	166
G. Seed cotton yield and its components	167
G.1. No. of open bolls / plant	167
G.2.Boll weight	172
G.3. Seed cotton yield / plant	174
G.4.Ginning out turn (lint %)	176
G.5.Seed cotton yield per feddan	178
G.6. An indicative comparison between early and late sowings	183
H. Fiber quality	185
SUMMARY AND CONCLUSION	192
LITERATURE CITED	206
الملخص العربي	

LIST OF TABLES

N0.	Title	Page
1	Plant distribution patterns.	33
2	Main characteristics of nano LITHOVIT [®] + 5% Boron (organic) used in the study	34
3	Properties of the water of irrigation in the two locations in the two seasons	35
4	Properties of the experimental soil sites in the two seasons	36
5	Minimum, maximum and mean values of air temperature and the relative humidity as means of seven-day intervals through 2018 and 2019 seasons	41
6	Leaves chemical composition determination.	42
7	Leaves water relations determination.	43
8	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves macronutrients percentages in 2018 and 2019 seasons.	54
9	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves macronutrients percentages in 2018 and 2019 seasons	57
10	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves micronutrients concentration in 2018 and 2019 seasons.	60
11	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves micronutrients concentration (ppm) in 2018 and 2019 seasons.	62
12	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves photosynthetic pigments content in 2018 and 2019 seasons.	66
13	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves photosynthetic pigments content in 2018 and 2019 seasons	68
14	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves total carbohydrate, total soluble sugars, total non-soluble sugars and proline concentrations in 2018 and 2019 seasons.	73
15	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves total carbohydrate, total soluble sugars, total non-soluble sugars and proline concentrations in 2018 and 2019 seasons	83

16	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves total water, free water, bound water, relative water contents and leaf water deficiency in 2018 and 2019 seasons.	89
17	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves total water, free water and bound water in 2018 and 2019 seasons	92
18	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaf water deficit and relative water contents in 2018 and 2019 seasons.	93
19	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves osmotic pressure (bar) and plasma membrane permeability (%) in 2018 and 2019 seasons.	98
20	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves osmotic pressure (bar) and plasma membrane permeability (%) in 2018 and 2019 seasons.	99
21	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves dry weight/plant, total plant dry weight, leaf area/plant and leaf area index after 15 days from the first foliar spraying in 2018 and 2019 seasons.	103
22	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves dry weight/plant, total plant dry weight, leaf area/plant and leaf area index after 15 days from the second foliar spraying in 2018 and 2019 seasons	104
23	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on leaves dry weight/plant, total plant dry weight, leaf area/plant and leaf area index after 15 days from the third foliar spraying in 2018 and 2019 seasons.	105
24	Effect of the interaction between plant distribution patterns and foliar spraying treatments on leaves dry weight/plant, total plant dry weight, leaf area/plant and leaf area index at the three growth stages.	120
25	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on Specific leaf weight, specific leaf area, leaf area ratio and leaf weight ratio after 15 days from the first foliar spraying in 2018 and 2019 seasons.	124

26	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on specific leaf weight, specific leaf area, leaf area ratio and leaf weight ratio after 15 days from the second foliar spraying in 2018 and 2019 seasons.	125
27	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on specific leaf weight, specific leaf area, leaf area ratio and leaf weight ratio after 15 days from the third foliar spraying in 2018 and 2019 seasons.	126
28	Effect of the interaction between plant distribution patterns and foliar spraying treatments on specific leaf weight, specific leaf area, leaf area ratio and leaf weight ratio.	127
29	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on crop growth rate and relative growth rate at the first and second growth periods in 2018 and 2019 seasons.	131
30	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on net assimilation rate at the first and second growth periods in 2018 and 2019 seasons.	134
31	Effect of the interaction between plant distribution patterns and foliar spraying treatments on crop growth rate and relative growth rate and net assimilation rate at the tow growth periods.	136
32	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on plant height, number of internodes/plants, internode length(cm) and number of vegetative branches/plant at harvest in 2018 and 2019 seasons.	139
33	Effect of the interaction between plant distribution patterns and foliar spraying treatments on plant height, number of internodes/plants, internode length(cm) and number of vegetative branches/plants at harvest in 2018 and 2019 seasons.	142
34	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on number of fruiting branches/plant, first fruiting node, number of days to first flower, boll maturation period (days) and days to first open boll in 2018 and 2019 seasons.	146
35	Effect of the interaction between plant distribution patterns and foliar spraying treatments on number of fruiting	147

	branches/plant, boll maturation period (days) and days to first open boll in 2018 and 2019 seasons.	
36	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on numbers of total bolls and flowers/plants, boll setting and shedding percentages and earliness index (%) in 2018 and 2019 seasons.	154
37	Effect of the interaction between plant distribution patterns and foliar spraying treatments on numbers of total bolls and flowers/plants, boll setting and shedding percentages and earliness index (%) in 2018 and 2019 seasons.	155
38	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on lint percentage, seed index (g) and number of seeds / bolls in 2018 and 2019 seasons.	165
39	Effect of the interaction between plant distribution patterns and foliar spraying treatments on seed index (g) in 2019 season.	166
40	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on boll weight (g), number of open bolls/plant, seed cotton yield (gram/plant) and seed cotton yield (kentar/fed) in 2018 and 2019 seasons.	170
41	Effect of the interaction between plant distribution patterns and foliar spraying treatments on boll weight (g), number of open bolls/plant, seed cotton yield (gram/plant) and seed cotton yield (kentar/fed) in 2018 and 2019 seasons.	172
42	An indicative comparison between early and late sowings with regard to seed cotton yield/fed in 2018 and 2019 seasons.	185
43	Effect of plant distribution patterns and foliar spraying treatments as well as their interaction on fiber quality traits in 2018 and 2019 seasons.	187
44	Averages of fiber length 2.5% span length (mm) as affected by the interaction between plant distribution patterns and foliar spraying treatments in 2019season.	190

LIST OF FIGURES

N0.	Title	Page
1	Layout of the experimental field in 2018 season	38
2	Layout of the experimental field in 2019 season	39

ABSTRACT

Two field experiments were conducted during 2018 and 2019 seasons at Sakha Agricultural Research Station, Kafr El Sheikh Governorate, Egypt to put the agricultural recommendations for the genotype [(Giza 89 x Karashinky) x Giza 86] x Giza 94 before releasing in agriculture as a new cultivar through find out the proper plant distributions of the recommended density(46,334 plant/fed) and the effect of nano Lithovit boron and mepiquat choloride (Pix) in reducing the negative effect of delaying sowing date through study the effect of seven plant distribution patterns pattern (1): sowing cotton in ridges 120 cm apart on both sides in hills 30 cm apart, 2 plants/hill after thinning, pattern (2): sowing cotton in ridges 120 cm apart on both sides in hills 15 cm apart, one plant/hill after thinning, pattern (3): sowing cotton in ridges 90 cm apart on both sides in hills 40 cm apart, 2 plants/hill after thinning, pattern (4): sowing cotton in ridges 90 cm apart on both sides in hills 20 cm apart, one plant/hill after thinning, pattern (5): sowing cotton in ridges 70 cm apart on one side in hills 26 cm apart, 2 plants/hill after thinning, pattern (6): sowing cotton in ridges 60 cm apart on one side in hills 30 cm apart, 2 plants/hill after thinning and pattern (7): sowing cotton in ridges 60 cm apart on one side in hills 15 cm apart, one plant/hill after thinning and three foliar spraying treatments (without, nano Lithovit boron and Pix) as well as their interaction on the Egyptian new genotype [(Giza 89 x Karashinky) x Giza 86] x Giza 94.

The experiment was laid out in a strip plot design with five replicates in the first season and four replicates in the second season

Patterns 1 and 2 significantly increased leaves chemical composition, growth, seed cotton yield/fed and its components, boll setting percentage, and earliness index in both seasons.

Foliar CO_2 as a nano-fertilizer (in the form of Lithovit) in addition to boron in the organic form at a rate of 2 g nano lithovit boron/l three times significantly increased leaves chemical composition, growth, seed cotton yield/fed and its components, boll setting percentage, and earliness index in both seasons.

Plants under plant distribution of pattern 1 and received nano Lithovit boron significantly increased leaves chemical composition, growth, seed cotton yield/fed and its components, boll setting percentage, and earliness index in both seasons.

It is a divisible to apply Pattern 1 and foliar feeding with CO_2 as a nanofertilizer (in the form of Lithovit) in addition to boron in the organic form at a rate of 2 g nano Lithovit boron/l three times for high yield and lint quality of the new genotype [(Giza 89 x Karashinky) x Giza 86] x Giza 94 under Sakha region conditions.

Key Words

Foliar, CO₂, nano, fertilizer, Lithovit, nanotechnology, genotype, cotton, Pix.