

Benha University Faculty of Veterinary Medicine Food Hygiene and Control Department

Harmful Residues in salted and smoked Fish

A Thesis Presented

By

Naglaa Mahmoud Sakr

B.V.Sc., Kafr Elsheikh University (2009) Agriculture Research Centre For the Degree of M.V.SC in Veterinary Medical Sciences (Meat Hygiene)

Under Supervision of

Prof. Dr.

Mohammed Ahmed Hassan

Professor of Meat Hygiene and Head of Food Hygiene and Control Department Faculty of Vet. Medicine, Benha University

Prof. Dr.

Fahim Aziz Eldien Shaltout

Professor of Meat Hygiene, Faculty of Vet. Medicine, Benha University

Prof. Dr.

Nabila Ibrahim Elsheikh

Chief Researcher of Food Hygiene, Agriculture Research Centre Animal Health Research Institute Tanta Branch 2020

Contents

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2. 1. Heavy metals	5
2. 1. 1. Incidence of heavy metals in fish	5
2. 1. 2. Sources of fish contamination with heavy metals	8
2. 1. 3. Public health hazards of heavy metals	11
2.2. Aflatoxin	14
2.2.1. Incidence of Aflatoxin in fish	14
2.2.2. Sources of Aflatoxin in fish	16
2.2.3. Public health hazards of Aflatoxin	19
2. 3. Histamine	22
2. 3. 1. Incidence of Histamine in fish	22
2.3.2. Sources of fish contamination with histamine	24
2.3.3. Public Health hazards of histamine	27
3. MATERIAL AND METHODS	30
3.1.Collection of samples	30
3. 2. Determination of heavy metals	30
3. 2.1.Washing procedures	30
3. 2.2. Digestion technique	31
3. 2.3. Preparation of blank and standard solutions	31
3. 2.4. Analysis	32
3. 2.5. Quantitative determination of heavy metal residues	33
3.3. Determination of aflatoxins:	33

	Page
3.3.1. Preparation of chemicals:	33
3.3.2. Standard Aflatoxin solutions:	34
3.3.3. Extraction and clean-up procedures for high-performance	
liquid chromatography (HPLC) analysis:	34
3.3.4. Determination of aflatoxins by HPLC method:	35
3.4. Determination of histamine by ELISA	36
3.4.1. Intended use and principle of the test:	36
3.4.2. Test procedure:	36
3.4.3. Preparation of reagents:	37
3.4.3.1. Wash Buffer:	37
3.4.3.2. Acylation Diluent:	37
3.4.3.3. Acylation Reagent:	37
3.5. Sample preparation and acylation:	37
3.6. Calculation of results:	39
3.7. Quality control	39
3.8. Calibration	39
3.9. Statistical analysis	40
4. RESULTS	41
5. DISCUSSION	61
6. SUMMARY	74
7. CONCLUSION AND RECOMMENDATIONS	77
8. REFERENCES	82
9. ARABIC SUMMARY	-

List of Tables

Table No.	Title	Page No
1	Prevalence of mercury residues in the examined samples of salted and smoked fish.	41
2	Concentrations of mercury residues (mg/Kg) in the examined samples of salted and smoked fish.	42
3	Analysis of variance (ANOVA) of mercury residues in the examined salted and smoked fish.	43
4	Validity of the examined salted and smoked fish based on their mercury residues.	43
5	Prevalence of lead residues in the examined samples of salted and smoked fish	44
6	Concentrations of lead residues (mg/Kg) in the examined samples of salted and smoked fish.	45
7	Analysis of variance (ANOVA) of lead residues in the examined salted and smoked fish.	46
8	Validity of the examined salted and smoked fish based on their lead residues.	46
9	Prevalence of cadmium residues in the examined samples of salted and smoked fish.	47
10	Concentrations of cadmium residues (mg/Kg) in the examined samples of salted and smoked fish.	48
11	Analysis of variance (ANOVA) of cadmium residues in the examined salted and smoked fish.	49
12	Validity of the examined salted and smoked fish based on their cadmium residues .	49

Table No.	Title	Page No
13	Prevalence of arsenic residues in the examined samples of salted and smoked fish.	50
14	Concentrations of arsenic residues (mg/Kg) in the examined samples of salted and smoked fish.	51
15	Analysis of variance (ANOVA) of arsenic residues in the examined salted and smoked fish.	52
16	Validity of the examined salted and smoked fish based on their arsenic residues.	52
17	Prevalence of copper residues in the examined samples of salted and smoked fish.	53
18	Concentrations of copper residues (mg/Kg) in the examined samples of salted and smoked fish.	54
19	Analysis of variance (ANOVA) of copper residues in the examined salted and smoked fish.	55
20	Validity of the examined salted and smoked fish based on their copper residues.	55
21	Prevalence of aflatoxin residues in the examined samples of salted and smoked fish.	56
22	Average concentrations of mycotoxin residues (ug/Kg) in the examined samples of fish products.	57
23	Prevalence of histamine in the examined samples of salted and smoked fish.	58
24	Concentrations of histamine (mg/Kg) in the examined samples of salted and smoked fish.	59

25	Analysis of variance (ANOVA) of histamine in the examined salted and smoked fish.	60
26	Validity of the examined salted and smoked fish based on their histamine contents.	60

List of Figures

No.	Figure Title	Page
1	Incidence of mercury residues in the examined salted and smoked fish.	41
2	Average concentrations of mercury residues (mg/Kg) in the examined salted and smoked fish.	42
3	Incidence of lead residues in the examined salted and smoked fish	44
4	Average concentrations of lead residues (mg/Kg) in the examined salted and smoked fish.	45
5	Incidence of cadmium residues in the examined salted and smoked fish.	47
6	Average concentrations of cadmium residues (mg/Kg) in the examined salted and smoked fish.	48
7	Incidence of arsenic residues in the examined salted and smoked fish	50
8	Average concentrations of arsenic residues (mg/Kg) in the examined salted and smoked fish.	51
9	Incidence of copper residues in the examined salted and smoked fish	53
10	Average concentrations of copper residues (mg/Kg) in the examined salted and smoked fish.	54
11	Incidence of aflatoxin residues in the examined salted and smoked fish.	56
12	Mean values of aflatoxin residues (ug/Kg) in the examined samples of fish products.	57
13	Incidence of histamine in the examined salted and smoked fish samples	58
14	Average concentrations of histamine (mg/Kg) in the examined salted and smoked fish.	59

6. Summary

The present study was carried out to analyze 90 samples of salted and smoked fish for determination of their contents to heavy metals (mercury, lead and cadmium, arsenic, copper), aflatoxin (B1, B2, G1, G2) and biogenic amines (histamine).

<u>1-Dermination of heavy metal residues:</u>

• Mercury (Hg):

The obtained results revealed that the mean values of mercury in the examined feisiekh, sardine and herring $0.92 \pm 0.01, 0.73 \pm 0.01$ and 0.48 ± 0.01 mg/kg, respectively.

The differences associated with mercury were highly significant among salted and smoked fish (P<0.01).

According to **EOS (2010)** which recommended that the maximal permissible limit for mercury is 0.5 (mg/kg) in fish, the number of accepted samples in the examined feisiekh, sardine and herring were 16, 21 and 22 represented as 53.3%, 70% and 73.3%, respectively.

• <u>Lead (Pb):</u>

Regarding to lead, the obtained results revealed that the mean values of examined feisiekh, sardine and herring were 0.67 ± 0.01 , 0.51 ± 0.01 and 0.32 ± 0.01 mg/kg, respectively.

The differences associated with lead were highly significant among salted and smoked fish (P<0.01).

According to **EOS (2010)** which recommended that the maximal permissible limit for lead is 0.1 (mg/kg) in fish, the number of accepted samples in the examined feisiekh, sardine and herring were 18, 22and 24 represented as 53.3%, 73.3% and 80%, respectively.

• <u>Cadmium (Cd):</u>

The average concentrations of the examined feisiekh, sardine and herring samples for cadmium residues were 0.21 ± 0.01 , 0.14 ± 0.01 and 0.10 ± 0.01 mg/kg, respectively.

The differences associated with cadmium were significantly different (P<0.05).

EOS (2010) recommended that the maximal permissible limit for cadmium is 0.1 (mg/kg) in fish, the number of accepted samples in feisiekh, sardine and herring samples were 20, 23and 24 represented as 66.7%, 76.7% and 80%, respectively.

• Arsenic (As):

The average concentrations of the examined feisiekh, sardine and herring samples for arsenic residues were 0.26 ± 0.01 , 0.12 ± 0.01 and 0.07 ± 0.01 mg/kg, respectively.

The differences associated with arsenic were high significant differences (P<0.01).

According to **Global Agricultural Information Network** "**GAIN**" (2014), the number of accepted samples in feisiekh, sardine and herring samples were29,30 and 30 represented as 96.7%,100% and100%, respectively.

• <u>Copper (Cu):</u>

The average concentrations of the examined feisiekh, sardine and herring samples for copper residues were 1.74 ± 0.23 , 2.29 ± 0.31 and 1.12 ± 0.15 mg/kg, respectively.

The differences associated with copper were significantly different (P<0.05).

According to Food Stuffs Cosmetics and Disinfectant Act (2007), the samples of feisiekh, sardine and herring samples were all accepted.

2-Aflatoxin:

Aflatoxin (B1) average mean in feisiekh was 8.96 ± 0.72 while aflatoxin (B1, B2, G1, G2) average mean in smoked herring was $25.38 \pm 1.55,9.06 \pm 0.14,5.81 \pm 0.43$ and 2.26 ± 0.05 , respectively. Sardine was free from aflatoxin.

3-biogenic amine residues (Histamine):

Concerning the average concentrations of histamine as biogenic amine residue, in the examined feisiekh, sardine and herring fish samples were 20.76 ± 0.54 , 15.49 ± 0.31 and 9.82 ± 0.26 , respectively.

The differences associated with histamine were highly significant differences (P<0.01).

According to **EOS (2010)** which recommended that the maximal permissible limit for histamine is 20 (mg/100g) in fish, the number of accepted samples in the examined feisiekh, sardine and herring were 14, 19and 21 represented as 46.7%, 73.3% and 70%, respectively.

Public health significance of these chemical residues and possible sources of fish contamination as well as some recommendations to control or minimize such toxic pollutants were discussed.