

Cairo University Faculty of Veterinary Medicine

Bacteriological and Molecular Studies on Multidrug Resistant Bacteria Isolated from Poultry and Poultry Products

A Thesis submitted by

Nesma Mohamed Kamel Ali

(B.V.Sc., Cairo University, 2010, M.V.Sc., Cairo University, 2015)

For the Ph.D. Degree in Veterinary Medical Sciences (Microbiology)

Under the supervision of

Prof. Dr. Heidy Mohamed Shawky

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed Samir Mohamed Dr. Eman Mohamed Farghly

Professor of Microbiology Faculty of Veterinary Medicine

Cairo University

Chief researcher in Reference Lab. for Quality Control of Poultry Production Animal Health Research Institute Dokki, Giza, Egypt Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Nesma Mohamed Kamel Ali
Date of birth: 15/11/1987.

Nationality:Egyptian
Place of birth: Cairo

Degree: Ph.D.in Veterinary Medical Science. Specification: Microbiology

(Bacteriology, Immunology and Mycology).

Thesis title: Bacteriological and Molecular Studies on Multidrug Resistant Bacteria Isolated from Poultry and Poultry Product.

Abstract

This study investigated the incidence of multi-drug resistant (MDR) organisms in poultry and poultry products in Egypt. From a total of 300 poultry and poultry product samples 25, 20, 15, and 10 isolates were recognized as Salmonella spp., E.coli, S.aureus and E.faecalis by bacteriological and molecular methods. Studying antibiotic sensitivity pattern of the bacterial isolates, multidrug resistance to three or more classes of antimicrobial groups was observed in 9 (36%), 18(90%), 15(100%), and 9 (90%) isolates of Salmonella spp., E.coli, S. aureus and E. faecalis, respectively. E. coli and Salmonella isolates were tested for its susceptibility against 14 different antibiotics; the highest resistance rates in E. coli were recorded against tetracycline, chloramphenicol, ampicillin, and sulphamethoxazole-trimethoprim with resistance rates of 90%, 85%, 80% and 80%, respectively. The highest sensitivity rates were detected for amikacin, cefuroxime and ampicillinsulbactam with sensitivity rates 100%, 75% and 70%, respectively. In Salmonella isolates increased resistance to cefotaxime and tetracycline with a percentage of 80% and 64% was detected, respectively. Also the highest sensitivity rates were detected for amikacin and ampicillin-sulbactam with sensitivity rates of (92%), and (88%) for amoxicillin clavulanate ceftazidime. The antibiotic susceptibility pattern of *S. aureus* was studied against 12 different antibiotics. The highest resistance rates were detected against methicillin, pencillin, erythromycin and azithromycin with resistance rates of (100%) and (80%) for gentamycin. The highest sensitivity rate was detected towards vancomycin with a percentage of 80%. In enterococci (100%) of the strains were resistant to clindamycin and ampicillin, (80%) for rifampin and 70% for tetracycline. The highest sensitivity rates were detected to pencillin and

vancomycin with a percentage of 80% and 60%, respectively. Serotyping of Salmonella spp. in chicken revealed that S. Enteritidis was the most isolated strain followed by S. Infantis (21.4%), S. Kentucky (14.2%) and S. Typhimurium, S. Kapemba, S. Newport, S. Vejle and S. Magherafelt were equally identified . S. Infantis was the most common strain detected in chicks (60%), while in ducks S. Typhimurium and S. Blegdam were equally identified. In ducklings, S. Sinchew, S. Infantis and S. Sekondi were equally. Only S. Newmexico was identified in poultry products. Isolates of E. coli recorded in chicken were serogrouped into O1, O8, O29, O125, O128 and O157. In chicks, O29 and O126 serotypes were detected. In poultry products only O8 was detected. Molecular detection for antibiotic resistance genes revealed that bla_{TEM} being the predominant b-lactamases detected in Salmonella spp. and E.coli. While mecA was detected in all S. aureus isolates (all are Methicillin resistant Staphylococcus aureus). For enterococcus vanA gene was detected in 3 isolates (30%), no vanB was detected. The results indicate that frequency of multi-drug resistant organisms has reached an alarming level in poultry isolates in Egypt. It significantly points to the great need to evaluate and monitor the incidence rate of multi-drugs resistant organisms.

Key words: MDR, *E. coli*, *mec*A gene, poultry, poultry products, *Salmonella*.

CONTENTS

•	List of Tables	I
•	List of Figures	I I
•	List of Abbreviations	.III
•	Chapter (1): Introduction	1
•	Chapter (2): Review of literature	8
•	_	
•		
•	Chapter (5): Conclusion and recommendation	102
•	Chapter (6): English Summary	109
•	Chapter (7): References	113
•	Appendix	167
•	Arabic summary	
•	المستخلص العربي	

		Page
	List of Tables	Ι
	List of Figure	II
	List of Abbreviation	III
Chapter 1	Introduction	1-7
Chapter 2	Review of literature	8-49
Chapter 3	Published paper	50-78
Chapter 4	Discussion	79-101
Chapter 5	Conclusion and recommendation	102-108
Chapter 6	English Summary	109-112
Chapter 7	References	113-166
	Appendix	167-185
	Arabic summary	
	المستخلص العربي	

LIST OF TABLES

No	Title	Page
1	Oligonucleotide primers sources.	71
2	Serogrouping of the isolated salmonellae isolates.	72
3	Serogrouping of the isolated <i>E. coli</i> isolates.	73
4	Characteristics of ESBL-producing <i>E.coli</i> isolates	74
	recovered from poultry and poultry products	
5	Characteristics of ESBL-producing Salmonella isolates	75
	recovered from poultry and poultry products	
6	Types of collected poultry samples	167
7	Incidence of bacterial isolates recovered from collected	
	poultry samples	
8	Incidence of recovered bacterial isolates according to the	168
	type of collected poultry products	
9	Incidence of recovered bacterial isolates according to the	169
	source of collected samples.	
10	Antimicrobial susceptibility disks according to (CLIS	170
44	,2017)	4=4
11	Interpretation zone diameter of the antimicrobial agents	171
	used (modified from CLSI, 2017).	
12	Multi drug resistance profile for recovered Salmonella	172
12	spp.	1=2
13	Multi drug resistance profile for recovered <i>E.coli</i>	173
14	Results of the (ESBL) for recovered Salmonella spp.	174
15	Results of the (ESBL) of recovered <i>E.coli</i>	176
16	Antibiotic disks used for detection of antibiotic	177
	sensitivity test of <i>E. faecalis</i> according to (CLIS ,2017)	
17	Interpretation zone diameter of the antibiotics used for <i>E</i> .	177
	faecalis (modified from CLSI, 2017).	
18	Multi drug resistance profile for isolated Enterococcus	178
	spp	
19	Antimicrobial disks used for sensitivity test of <i>S. aureus</i>	179
	according to CLIS (2017)	
20	Interpretation zone diameter of the antimicrobial agents	180
	used for <i>S.aureus</i> (modified from CLSI, 2017).	
21	Multi drug resistance profile for isolated <i>S.aureus</i>	181
22	Oligonucleotide primers for PCR amplification of	182
	antibiotic resistance genes of isolated bacterial species	

LIST OF FIGURES

No	Title	Page	
1	Agarose gel electrophoresis of PCR for	76	
	detection of <i>bla</i> _{CTX} gene in <i>Salmonella</i> .		
2	Agarose gel electrophoresis of PCR for	76	
	detection of <i>bla</i> _{SHV} gene in <i>E.coli</i> .		
3	Agarose gel electrophoresis of PCR for	77	
	detection of <i>bla</i> _{SHV} gene in <i>Salmonella</i> .		
4	Agarose gel electrophoresis of PCR for	77	
	detection of bla _{TEM} gene in Salmonella.		
5		78	
	8		
	detection of <i>bla</i> _{TEM} gene in <i>E.coli</i> .	102	
6	Multidrug resistance of the identified strains	183	
7	The incidence of β -lactamases genes in <i>E.coli</i>	184	
	and Salmonella isolates		
8	Agarose gel electrophoresis of PCR for	184	
	detection for detection of van A gene in		
	Enterococcus spp.		
9	Agarose gel electrophoresis of PCR for detection		
	of Van B gene in Enterococcus spp.		
10	Agarose gel electrophoresis of PCR for	185	
	detection of mecA gene in S.aureus.		