

STUDIES ON BAGASSE AS ADSORBENT MATERIAL FOR AFLATOXINS IN RABBITS FEED

By

Tamer Sayed Abd El-Ghany Gad B. Sc. Of Agri., Cooperation (1998)

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Environmental science

In

Agriculture Science

Department of Sustainable Development of the Environment and Management of its Projects University of Sadat City EGYPT

2020

Name of Candidate: Tamer sayed abd el ghany gad Degree: M.Sc Title of Thesis: Studies of Bagasse as Adsorbent Material for Aflatoxins in Rabbits Feed Supervisors: Prof. Dr. Mahmoud Saad Mahmoud abousekken Prof. Dr. Amal Abdel Aziz Abo Hager Dr. Hosny Elsayed Ahmed Abo-Eid Department: Sustainable Development of the Branch: Agriculture Science Environment and Management of its Projects Approval: / /

ABSTRACT

A study using fifty four of males growing White New Zealand (WNZ) rabbits of aged 4 weeks with initial mean weight (750±50g), divided into 9 equal groups and were kept under the same conditions and conducted to determine the effect of feeding dietary bagasse as a source of natural dietary fiber and as adsorbent for aflatoxins or natural contamination in rabbit diets and to evaluate the using of dietary bagasse on growth performance parameters rabbits. The final of experimental period, LBW of tested rabbit groups cleared insignificantly, group fed basal diet supplemented with bagasse at level 6% (T₅) recorded the best LBW (2279.2g) followed by group fed diet supplemented low dose of AFs+ bagasse at level 3% (T₇) being (2220.80 g).TG cleared insignificant differences among the experimental groups which cleared that group supplemented with dietary bagasse at level 6% (T₅) achieved the highest LBWG value (1532.0) followed by group fed dietary bagasse at level 6% and low dose of AFs (75ppb) (T₈) (1478.33g), compared with control basal diet(T₁). FI (g) total feed intake than rabbit groups fed low dose of AFs+ detary bagasse at level $3\%(T_6)$ and rabbit group dietary bagasse at level $6\%(T_4)$ which significantly (P<0.05) consumed the lowest amount of total feed intake (4899.2 and 4411.5 g) compared with control and other perimental groups. FCR (g feed/g gain) was observed with group fed 6% bagasse (T_5) (3.65) followed by rabbit group fed 3% bagasse with low aflatoxin dose (75 μ g total AFs/kg diet) (T₆) being (3.67) and rabbit group fed 6% bagasse with low aflatoxin dose (75µg total AFs/kg diet) (T_7) (3.86) compared with other experimental groups. These results means that different levels of dietary bagasse up to 3 or 6 % adsorb aflatoxin dose up to 150µg total AFs/kg diet and improved feed efficiency. No mortality until the end of the week4 of experimental period. During the week 6, two growing rabbits died from treatment T₃ (which fed a high dose of aflatoxin). During week 8, one growing rabbit died in the T₂ (which fed a low dose of aflatoxin). The best Economic Efficiency high aflatoxin dose +6% bagasse (T_9)(55.99; 2.36 and 125.53, respectively).after that , high aflatoxin dose +6% bagasse diet (T_9) recorded the best relative economic efficiency % from control diet (2.36 and 125.53) followed by the 6% bagasse diet (T_5) (2.27 and 120.74 %) followed by low aflatoxin dose +3% bagasse diet (T_6) (2.26 and 120.21 %) compared with basal diet (T_1) (1.88 and 100%) and other groups. Rabbits fed on TAF with low and high concentration showed a significant increase in serum ALT,AST, and ALP activity comparing with Basal diet control group (T_1) . The highest activity value for ALT, AST, and ALP were 43.67, 58.33 and 637.67 (U/L), respectively, detected with the group treated with highest concentration of TAF alone (T_3) . Total protein (TP), and albumin (ALb) of rabbits treated with two doses low, and high aflatoxins (T_2 , T_3) caused a significant decrease in both value when compared with control group T_1 The data showed that significant increase in values of serum creatinine and urea of rabbits fed on low and high doses of aflatoxins (T_2 , and T_3) when compared with control group T_1 . Rabbit groups treated with low and high doses of aflatoxins (T_2 , and T_3) significant increase in liver, and kidney weight mainly at the end of the experimental period, compared with control rabbits had basal diet(T_1). Key words: Growing rabbits- aflatoxin - Adsorption - bagasse - growth performance

LIST OF ABBREVIATIONS

Abbreviation

Description

AFs	Aflatoxins
AFB ₁	Aflatoxin B ₁
AFB ₂	Aflatoxin B ₂
AFG ₁	Aflatoxin G ₁
AFG ₂	Aflatoxin G ₂
ALPh	Alkaline phasphatase
ALBU	Albumin
ALT	Alanine amino tranferase
AST	Aspartate aminotranferase
CF	Crud fiber
СР	Crude Protein
Creat	Creatine
Chol	Cholestrol
D	Day
DM	Dry matter
ЕЕ	Ether extract
EEF	European efficiency factor
EFf	Economical Efficiency
FC	Feed Cost
FCR	Feed conversion ratio
FI	Feed Intake
Н	Hour
LBW	Live Body weight
LBWG	Live body weight gain
L.E	Egyptian pounds
MR	Mortality rate
NRC	National Research council
OM	Organic matter
TLBW	Total Live Body weight
TLBWG	Total Live body weight gain

Abbreviation

Description

TFCR	Feed conversion ratio
TFI	Feed Intake
TP	Total protin
TAF	Total aflatoxin
TRT	Treatment
RG	Relative Growth
SE	Standard Error

CONTENTS

Item	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. History of Aflatoxins	4
2.Structure and Toxicity	6
a. Chemical structure	6
3. Role of aflatoxins in cancer	8
4. Health effects of aflatoxins on human and animals (Aflatoxins)	10
5.Factors influencing aflatoxin production	13
a. Fungi strain.	13
b. Kind of Substrate	14
c. Moisture and relative humidity	14
d. Temperature and incubation time.	15
e. Damage.	16
f. Growth and maturity of the host.	17
6.Contamination monitoring in rabbit feed	19

•

•

Page

a.Aflatoxins
7. Biological effect of aflatoxins on different body systems and organs
a. Effect of aflatoxins on the cardiovascular system, blood and blood cells
b. Role of aflatoxins in hepatic injury and other body organs and tissues
c. Effect of aflatoxin on the gastrointestinal tract (GIT)
8. Bagasse description
a. Uses of bagasse
b. Chemical composition of bagasse
c. Structure characterization of bagasse
9.Functional properties of sugarcane bagasse.
a. Bagasse in animal feeding
b. Effect of treated with bagasse on animal performance
c. Effect of treated with bagasse on animal Immunity
d. Effect of treated with bagasse on animal digestibility
e. Effect of treated with bagasse on animal meat quality
f. Effect of treated with bagasse on animal ceacum activity
g. Effect of treated with bagasse on animal economic efficiency

MATERIALS AND METHODS

1.Chemicals	31
2. Microorganism	31
3. Standard Aflatoxins.	31
4. Plant sample	31
5. Aflatoxins production and assays.	31
a. Preparation of media for <i>Aspergillus flavus</i> growth	31
b. Fungal growth	33
6. Determination of aflatoxins concentration	33
7. Preparation of aflatoxins dose for rabbit experiment	34
8. Preparation of dietary bagasse	34
9. In vitro experiments.	35
10. Meteorological parameters.	35
11. Animals, housing and experimental design	36
12. Experimental feedstuffs.	36
13. Measurements and methods of interpreting results	37
a. Growth performance	37
b. Live body weight (LBW)	38
c. Live body weight gain (LBWG)	38
d. Feed intake (FI)	38
e. Feed conversion ratio (FCR).	38

Page

f. Mortality rate (MR)	39
14. Blood sampling and Parameters.	39
a. Determination of total protein (TP).	39
b. Determination of Albumin.	39
c. Determination of Globulin.	39
d. Determination of Urea	40
e. Determination of Creatinine level	40
f. Determination of Liver function enzymes	40
g. Total Cholesterol	40
15. Body and organs weights	40
16. Histopathological examination	40
17. Analytical Methods.	41
18. Economical efficiency	41
19. Statistical Analysis	42
RESULTS AND DISCUSSION	44
1. Chemical composition	44
a. The concentration of the active constituents of <i>Bagass</i>	44
b. Chemical composition of tested diets	45
2. Growth performance	46
a. Live body weight (LBW) (g).	46
b. Live body weight gain (LBWG).	49
c. Feed intake (FI)	53

Page

d. Feed conversion ratio (FCR)	5
4. In vitro experiment: Adsorption of Aflatoxins by bagasse	6
5. In vivo Change in biochemical values during treatment period in different experimental groups of rabbits results	6
a. Effect of various concentrations of bagasse and aflatoxins doses addition level.	6
i. Liver function	6
ii. Kidney Function	
iii. weight Liver and Kidny	7
6. Histopathology examination	
a. Liver study	7
b. Kidneys Study	8
7. Economic Efficiency	8
CONCLUSION	9
UMMARY	9
REFERENCES	10
Arabic Summary	

Item

LIST OF TABLES

No.	Title
1	Physical properties of some aflatoxins
2	The experimental design used in vitro experiment
3	Composition of ingredient feed rations for control and treated groups
4	proximate composition of bagasse used for preparation of dietary fiber
5	Chemical composition (Proximate Analysis) of Experimental rations and faces (as fed).
6	Live body weight (LBW) (g) of growing rabbits as affected by different levels of dietary bagasse. (Means ± SE)
7	Live body weight gain (LBWG) (g) of growing rabbits as affected by different levels of dietary bagasse (Means \pm SE)
0	Feed intake (FI) (g) of growing rabbits as affected by different levels of
8	dietary bagasse. (means ± SE)
9	Feed conversion ratio (FCR) (g) of growing rabbits as affected by different levels of dietary bagasse. (Means \pm SE)
10	Mortality of growing rabbits as affected by different levels of dietary bagasse. (Means \pm SE)
11	Concentration of remaining TAF Treated by bagasse as affected by different Treatment
12	Percent of bounding TAF using bagasse as affected by different Treatment.
13	Levels of some enzymatic serum activity (ALT,AST, ALP and ChoL) of controls and experimental rabbits
14	TP, Albumin, creatinine, and Urea Concentration in Serum of rabbit, fed on aflatoxin Contaminated diet supplemented with bagasse
15	Liver and Kidney weight of growing rabbits as affected by different levels of dietary bagasse
16	Economical efficiency of growing rabbits as affected by different levels of dietary bagasse

LIST OF FIGURES

No.	Title	page
1	Chemical structure of aflatoxins HPLC Chromatogram for the aflatoxin mother solution. Showing AFB ₁ ,	7
2	AFB ₂ , AFG ₁ and AFG ₂	34
3	Final live body weight (g) as affected by different levels of dietary bagasse	48
4	Total gain as affected by different levels of dietary bagasse	51
5	Total feed intake (g) as affected by different levels of dietary bagasse	55
6	Average FCR after 8 weeks as affected by different levels of dietary bagasse	59
7	Mortilty % Effect of various concentrations of bagasse and aflatoxins singly or in	63
8	combination on blood enzymes (ALT, AST and ALP) of rabbits.	68
9	Effect of various concentrations of bagasse and aflatoxins singly or in combination on blood Cholesterol of rabbits	68
10	. Effect of various concentrations of bagasse and aflatoxins singly or in combination on blood parameters (TP and Albumin) of rabbits	72
11	Effect of various concentrations of bagasse and aflatoxins singly or in combination on blood urea of rabbits	73
12	Effect of various concentrations of bagasse and aflatoxins singly or in combination on blood creatinine of rabbit	73
13	Liver weight	73 76
14	Kidney weight	76
15	Sections in the liver of basal diet group T_1 and basal diet supplemented with 3, and 6% bagasse T_4 and T_5 (H&EX400)	78
16	A Sections in the liver of rabbits received low dose of aflatoxins T_2 (H&EX400)	79
17	A Sections in the liver of rabbits received High dose of aflatoxins T_3 (H&EX400)	79
18	Sections in the liver of rabbits received AF low dose and bagasse $3\% T_6$ (H&EX400)	80
19	Sections in the liver of rabbits received AF low dose and bagasse 6% T ₇ (H&EX400).	81
20	Sections in the liver of rabbits received AF high dose and bagasse 3% T ₈ (H&EX400)	81
21	Section in the liver of rabbits received high dose of aflatoxin and bagasse 6% T ₉ (H&EX400)	82
22	Sections in the kidneys of basal died group T_1 and basal died supplemented with 3, and 6% bagasse T_4 and T_5 (H&EX400)	83

23	Sections in the kidney of rabbits received low dose of aflatoxins T_2	0.4
24 25	(H&EX400) A Sections in the kidney of rabbits received high dose of aflatoxins T_3	84
	(H&EX400) Sections in the kidney of rabbits received AF low dose of and	85
	bagasse 3% T ₆ (H&EX400)	86
26	Sections in the kidney of rabbits received AF low dose of and bagasse (H&EX400).	86
27	Sections in the kidney of rabbits received AF high dose of and bagasse (H&EX400)	87
28	. Sections in the kidney of rabbits received AF high dose of and bagasse (H&EX400)	88
29	Economic efficiency	92
30	Economic efficiency %	92