

EFFECT OF USING DIFFERENT DIETARY LEVELS OF ARGININE AMINO ACID ON THE PERFORMANCE AND IMMUNITY OF GROWING RABBITS

By

Ahmed Mohamed Ahmed Dahy

B.Sc. Agric. Dept. (Environment and Bio Agriculture) Al-Azhar University, 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Environmental science

In

Agriculture Science

Department of Sustainable Development of the Environment and Management of its Projects

University of Sadat City EGYPT

2020

Name of Candidate: Ahmed Mohamed Ahmed Dahy	Degree: M.Sc.
Title of Thesis: EFFECT OF USING DIFFERENT DIETARY LEVELS OF ARGININE	AMINO ACID
ON THE PERFORMANCE AND IMMUNITY OF GROWING RAB	BITS

Supervisors: Prof. Dr./ Mahmoud Saad M. Abousekken Prof. Dr./ Mohammed Ahmed El-Sherbiny Dr./ Hosny Elsayed Ahmed Abo-Eid

Department: Sustainable Development of the Environment and Management of its Projects **Branch: Agriculture Science**

Approval: / /

Abstract

The study was conducted to determine the effect of the use of different levels of arginine amino acid on growth performance, immunity, some biochemical parameters, digestibility, carcass traits and economic efficiency of growing WNZ rabbits. Forty growing White New Zealand (WNZ) rabbits of both sexes (males and females), aged 5 weeks with an average initial weight of 739.75 \pm 87.55 g. The animals were divided into 5 groups. Each group has 4 replicates. All animals were individually housed in galvanized wire cages and kept under the same managerial conditions. Formulated diets of 17% crude protein (CP) were used. The experimental groups were arranged as the following: group 1:(T₁) (commercial or control diet) contain the requirements of arginine according to (NRC, 1977) (0.6g/ kg diet) - (basal diet) ; group 2:(T₂) addition of arginine by 0.2g/kg diet) ; group 4:(T₄) addition of arginine by 0.6g/kg diet to the basal diet (1.0g/kg diet) ; group 4:(T₄) addition of arginine by 0.6g/kg diet). The criteria that measured and calculated were growth performance; immune response; caecum activity; digestibility; nitrogen balance (NB);blood parameters; carcass traits and economic efficiency.

The final body weight of rabbit fed T_3 was insignificantly higher (2500.0g) than the other groups T_1 , T_2 , T₄ and T₅ being (2280.0; 2487.50; 2446.88 and 2316.43g, respectively.). No significant differences observed in final body weight gain between control and experimental groups. T_1 group significantly (p<0.05) recorded the lowest total feed intake (5475g). No cleared effect for dietary arginine on Feed conversion ratio (FCR). The highest value of Mean of total performance index (PI) was insignificantly (p>0.05) recorded for T₄ and T₃ (55.72 and 54.04%) while, the worst value achieved by the control group (47.44%). No significant differences observed among organic matter (OM) and CP digestibility for T_2 , T_3 , T_4 compared with control group (T_1). The highest digestible CP value was significantly (P < 0.05) recorded with T₄ group (15.2 g). Control group recorded the highest digestible crude fiber (CF) (5.53g) compared to other experimental groups. A significant increase in nitrogen intake (NI) was observed with group fed 0.8g/kg dietary arginine (T₂) (3.28g) followed by T₄ (3.26g) while, group fed 1.4g/kg dietary arginine (T_5) recorded the worst NI compared with control T_1 (3.24). Microbial activity as total volatile fatty acids (TVFA's) production in the caecum tended to be higher in caecum content of T_3 and T_4 compared with control and other experimental diets. Rabbits fed diets with supplementation of dietary arginine by 1.2g/kg diet (T₄) were the best immunity compared with control and other experimental groups. T₅ group had significantly (p<0.05) the lowest abdominal fat% (0.89%) followed by T_4 (1.04%) while, the highest abdominal fat% was recorded with control group (T_1) (2.17%); T3 (2.03%) and T_2 (1.94%). From economical *point of view*, these findings indicated that rabbits groups supplemented dietary arginine by 1.2g/kg diet had a positive effects on economic parameters. Further research is required to establish the optimal dose and the best period for their supplementation.

Keywords: Arginine; growing rabbits; performance; immune response; economic efficiency.

Abbreviation	Description
A/G	Blood albumin / Blood globulin
ADG	Average daily gain
Al	Blood albumin
BV	Biological value
BWG	Body weight gain
CF	Crud fiber
СР	Crude protein
CYC	Crushed yellow corn
D	Day
DM	Dry matter
DR %	Dressing percentage
EE	Ether extract
EEf	Economical efficiency
ESRI	Environmental Studies and Research Institute
FC	Feed cost
FCR	Feed conversion ratio
FI	Feed intake
FLBW	Final live body weight at the end of the experimental period
FN	Fecal nitrogen
GIT	Gastrointestinal tract length
GL	Blood globulin
Glu	blood glucose
GR	Growth rate
Н	Hour
HB	Blood hemoglobin
HDL	High density lipoprotein
IW	Initial live body weight
L.E.	Egyptian pounds
LBW	Live body weight

LIST OF ABBREVIATIONS

Abbreviation	Description
LBWG	Live body weight gain
MG	Milligram
Mort%	Mortality rate
NB	Nitrogen balance
NFE	Nitrogen free extract
NI	Nitrogen intake
NR	Net revenue
NRC	National Research Council
OM	Organic matter
PI%	Performance index %
REF	Relative economic efficiency
RG	Relative growth
SE	Standard error
TAC	Total antioxidant capacity
TDN	Total digestible nutrients
TFCR	Total feed conversion ratio
TFI	Total feed intake
TG	Tri-glecriydes
TL	Total lipids
TP	Total protein
TP	Blood serum total protein
TPI	Total performance index of experimental period
TRT	Treatment
TVFA	Total volatile fatty acids

A	h	b	re	vi	ิล	ti	o	n
<u> </u>					u	•••	υ	

UN

Urinary nitrogen

LIST OF CONTENTS

Page

INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Metabolism of Arginine	8
2. Amino acids in rabbit nutrition	10
a. The importance of amino acids in feeding rabbits	10
3. Management of amino acids in rabbit	12
4. Effect of deficiency of amino acids in rabbit	13
5. Coprophagy in rabbit and amino acids	13
6. Arginine in poultry and rabbits diets	14
7. Importance of dietary arginine in rabbit diets.	15
8. Effect of dietary arginine on immune response	17
9. Dietary arginine and rabbit immunity	19
10. Dietary arginine and meat quality	21
11. The role of nitrogen in microbial growth in the caecum of rabbits	22
12. Digestibility and evaluation of nitrogen and amino acid	24
13. Effect of amino acids on economical efficiency	25
MATERIALS AND METHODS	26
1. Animals, housing and experimental design	26
2. Experimental Diets	27
3. Measurements and methods of interpreting results	27
a. Rabbit growth performance	27
b. Feed intake	28
c. Feed conversion ratio	28
d. Performance index	29
4. Mortality %	30
5. Digestion experiments	30
6. Cecum activity	31
a. Estimation of caecum PH	31
b. Determination of caecum total volatile fatty acids	31

7. Analytical Methods	31
8. Blood Parameters	32
a. Determination of total protein	32
b. Determination of albumin	32
c. Determination of globulin	32
d. Kidneys functions	33
e. Determination of uric acid	33
f. Alkaline phosphatase	33
g. Determination of liver function enzymes	33
h. Cholesterol	33
9. Carcass traits	33
10. Organoleptic evaluation of cooked chicken meat (Sensory	
evaluation of cooked meat	34
11. Economic efficiency	35
12. Statistical analysis	36
RESULTS AND DISCUSSION	37
1. Chemical composition	37
a. Chemical composition of tested diets	37
b. Amino acids composition of the experimental diets	37
2. Growth performance	37
a. Live body weight	37
b. Live body weight gain	41
c. Feed intake	44
d. Feed conversion ratio	47
e. Performance index	49
3. Mortality rate	52
4. Nutrients digestibility %	52
5. Digestible nutrients and nutritive values	54
6. Nitrogen balance	56
7. Caecum activity	58
8. Immune response	61
9. Plasma biochemical parameters	64

10. Carcass characteristics	67
11. Organoleptic evaluation of cooked rabbit's meat	69
12. Economic efficiency	70
CONCLUSIONS	73
SUMMARY	74
REFERENCES	82
Arabic Summary	• • • • • • •

LIST OF TABLES

No.	Title]
1.	Protein and amino acid recommendations according to several authors (as- fed basis)	
2.	The experimental groups	
3.	Composition of ingredient feed rations for control and treated groups	
4.	Evaluation form for description of sensory properties for all trademarks	
5	Chemical composition (proximate analysis) of experimental	
5.	rations (as fed)	
6.	Amino acids composition of experimental diets (g/kg DM)	
7.	Live body weight (g) of growing rabbits as affected by different levels of arginine (Means \pm SE)	
8.	Live body weight gain (g) of growing rabbits as affected by different levels of dietary Arginine (Means \pm SE)	
9.	Feed intake (g) of growing rabbits as affected by different levels of arginine (Means \pm SE)	
10.	Feed conversion ratio (FCR) (g feed/g gain) of growing rabbits as affected by different levels of arginine (Means \pm SE)	
11.	Performance index of experimental rabbits as affected by different levels of arginine (means \pm SE)	
12.	Digestibility% of nutrients as affected by different levels of arginine (Means \pm SE)	
13.	Digestible nutrients and nutritive values as affected by different levels of arginine (Means \pm SE)	
14.	Nitrogen balance and biological value of experimental diets as affected by different levels of dietary arginine (Means \pm SE)	
15.	Effect of supplemented different levels of dietary arginine on caecum activity of growing rabbits (Means \pm SE)	
16.	Some blood parameters as immune response indicator of experimental rabbits as affected by different levels of arginine (Means \pm SE)	
17.	Plasma biochemical parameters of growing rabbits as affected by different levels of arginine (Means \pm SE)	
18.	Carcass characteristics of experimental rabbits as affected by different levels of dietary arginine (Means \pm SE)	
19.	Organoleptic evaluation (Sensory) of cooked rabbit's meat as affected by different levels of arginine (Means \pm SE)	

20.	Economical efficiency of growing rabbits as affected by supplemented	71
	dietary different levels of arginine	

LIST OF FIGURES

No.	Title	Page.
1.	The structural formula of Arginine	8
2.	Metabolism of arginine in the animal body	10
3.	Final body weight (g) as affected by supplemented dietary different levels of dietary arginine	41
4.	Total live body weight gain as affected by supplemented dietary different levels of dietary arginine	44
5.	Total feed intake (g) after 8 weeks as affected by supplemented dietary different levels of dietary arginine	47
6.	Average FCR as affected by supplemented dietary different levels of dietary arginine	49
7.	Average Performance index (PI %) as affected by supplemented dietary different levels of dietary arginine	51
8.	Digestibility % of CP as affected by supplemented dietary different levels of dietary arginine	53
9.	Digestibility % of CF as affected by supplemented dietary different levels of dietary arginine	54
10.	Digestible CP (DCP) as affected by supplemented dietary different levels of dietary arginine	55
11.	Digestible CF values as affected by supplemented dietary different levels of dietary arginine	56
12.	Nitrogen balance (NB) as affected by supplemented dietary different	58
12.	levels of dietary arginine	38
13.	Cecal TVFA as affected by supplemented dietary different levels of dietary arginine	61
14.	Abdominal fat % as affected by supplemented dietary different levels of dietary arginine	69
15.	Economic efficiency of growing rabbits as affected by supplemented dietary different levels of arginine	72
16.	Relative economic efficiency% of growing rabbits as affected by supplemented dietary different levels of arginine	72