

STUDY THE EFFICIENCY OF DRIP IRRIGATION SYSTEM USING LASER BEAM – IN VITRO

By MOHAMMED MOUSTAFA MAHMOUD

B.Sc. Agricultural Engineering, Faculty of Agric., Al-Azhar University, 2009

Submitted for the Degree of Master

IN Laser Science

Department of Laser Application in Metrology, Photochemistry and Agriculture (LAMPA)

Laser Application in Biotechnology and Agriculture Agricultural Engineering

National Institute of Laser Enhanced Sciences Cairo University Giza, ARE

ABSTRACT

The present study was executed in the Laboratory of Laser Applications in Agricultural Engineering at the National Institute of Laser Enhanced Science (NILES) at Cairo University to obtain the peak of optical properties at transmission and absorption intensities of irrigation water samples which carried out at the National Irrigation Laboratory of Agricultural Engineering Research Institute (AEnRI), ARC, Dokki, Giza. The main objectives of the present work are to create a selection of suitable wavelength to study the optical properties of suspended solids in filters and determination of concentration suspended solids in the filtration media.

In the drip irrigation system, the small openings can be easily clogged by suspended solids according to the level of TSS and plugging is caused fall into three categories (<50, 50-100, >100) (Slight, Moderate, Severe) respectively.

Light was measured via remote sensing reflectance (Rrs) spectra deduced from radiance and irradiance measurements that were performed using an Ocean Optics USB650 to detect suitable wavelengths from visible and invisible light (ultraviolet, visible and infrared wavelengths) to measure the peak of optical properties at reflection, transmission and absorption.

It was found that using a media filter of Local basalt media increased TSS in a water sample and created filter pressure differential results. It increased from 0.2 bar to 0.6 bar and also increased absorption (0.189 to 0.447a.u.). Reflection and transmission decreased (79.285 to 49.645a.u.), (78.288 to 44.711a.u.).

When using a media filter of Al-Abaster Misr Bank media. This increased TSS in the water sample and created filter pressure differential results that increased from 0.2 bar to 0.6 bar and increased absorption (0.205 to 0.520 a.u.) while decreasing reflection and transmission (76.047 to 36.672a.u.), (80.759 to 36.278a.u.).

A media filter of Ward El-Nile Zaffaran media increased TSS in the water sample and created filter pressure differential results that increased from 0.2 bar to 0.6 bar while increasing absorption (0.224 to 0.815a.u.) and decreasing reflection and transmission (67.37 to 27.37a.u.), (69.65 to 26.64a.u.).

Meanwhile, an evaluation of the dripper's efficiency according to the use of appropriate filtration media for the first filter yielded the following results: Local basalt media (0.2, 0.4 and 0.6 bar) showed emission uniformity of EU% 94.73, 89.553 and 79.649% (excellent, good and fair results, respectively). The second filter of Al-Abaster Misr Bank media (0.2, 0.4 and 0.6 bar) showed EU% 95.578, 87.561 and 68.562% (excellent, good and poor results, respectively). The third filter of Ward El-Nile Zaffaran media (0.2, 0.4 and 0.6 bar) showed EU% 95.836, 89.664 and 79.566% (excellent, good and fair results, respectively).

For determining the most accurate filtering media type with the highest efficiency for filtration, the values were 79.3% and 76.9%, respectively, for Local basalt media and Al-Abaster Misr Bank media. When using the filter of Ward El-Nile Zaffaran media, however, the removal efficiency was low at 40.97%.

These results show that there are two kinds of filtering media, Local basalt media and Al-Abaster Misr Bank media, that are acceptable and another kind, Ward El-Nile Zaffaran media that is unacceptable. It is possible to distinguish and evaluate the optical properties for Local basalt media and Al-Abaster Misr Bank media. Laser properties measurements were performed using a He-Ne laser at 632.8 nm.

KEYWORDS:-

Filter - Drip irrigation system - Total Suspended Soiled (TSS) - Optical Properties - Ocean Optics - He-Ne Laser.

CONTENTS

	Subject	Page
		No.
List of Tal	bles	IV
List of Figures		VI
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Drip Irrigation systems	3
2.1.1	Definitions	4
2.1.2	Trickle irrigation system components	4
2.1.3	The advantages and disadvantages of trickle irrigation system	5
2.2	Water quality	9
2.2.1	Fresh Water	9
2.2.2	Water quality and drip irrigation system	12
2.2.3	Physical properties of water on drip irrigation system	13
2.3	Media filters selection	14
2.3.1	Filtration	15
2.3.2	Selection of filter type	15
2.3.3	Media Characteristics	16
2.3.4	Sand media filters	17
2.3.5	Effect of filtration media on chemical properties of irrigation water.	18
2.3.6	Mechanical analyses of filtration media	19
2.3.6.1	Mechanical analyses	19
2.3.6.2	Uniformity Coefficient	29
2.3.6.3	Effective Particle Size	20
2.3.7	Physical properties of filtration media	20
2.4	Media filter and its effect on physical properties of irrigation water	21
2.5	Remote sensing technology	22
2.5.1	Remote sensing technology in precision agriculture (PA)	22
2.5.2	Relationship between remote sensing and water quality	25

2.5.3	Relationship between wavelength (reflectance) and turbidity and	30
	total suspended solids	
2.6	Theory of bio-optical model	32
2.7	The summary of the literature review	36
3	MATERIALS AND METHODS	37
3.1	Materials	37
3.1.1	A Control Head Unit	37
3.1.2	A hydraulic test bench	38
3.1.2.1	Hydraulic system description	40
3.1.2.2	Water temperature and filtration	40
3.1.2.3	Supporting frame	41
3.1.2.4	Catch can water from emitters	41
3.1.2.5	Measuring devices	41
3.1.3	A Light and spectrophotometer	42
3.1.4	Laser Setup	44
3.1.5	Irrigation system layout	45
3.2	Methods	46
3.2.1	The test producer	46
3.2.2	Filter Media Properties	47
3.2.2.1	Chemical analysis	47
3.2.2.2	Permeability measurement	48
3.2.2.3	Mechanical analysis	49
3.2.2.4	Physical analysis	51
3.2.2.5	Removal efficiency	53
3.3	Methods of calculation	53
3.3.1	Performance and evaluation of the selected emitters	54
3.3.1.1	Pressure- flow relationships	54
3.3.1.2	Emitter manufacture's coefficient of variations	55
3.3.1.3	Emission uniformity (EU)	55
3.4	Analysis of data	56
4	RESULTS AND DISCUSSION	57

4.1.1	System evaluation	57
4.2	Optical properties (Absorption, Reflection, Transmission	61
	coefficient and its spectral optical properties)	
4.2.1	Optical properties the first filter using Local basalt media	61
4.2.2	Optical properties of water from the second filter: using Al-Abaster	71
	Misr Bank media	
4.2.3	Optical properties of water from the third filter: using Ward El-Nile	81
	Zaffaran media	
4.3	Filter performance	91
4.3.1	Removal efficiency was calculated with the following equation	91
4.4	Analysis of data	92
4.4.1	Statistical analysis of TSS and wavelength	92
4.4.2	Paired-Samples T-test of TSS and wavelength	100
4.5	Optical properties: He-Ne laser 632.8nm properties	101
4.5.1	Laser properties for three type's media filter at a difference	101
	pressure (Δp) 0.2 bars at wavelength 623.8 He-Ne laser	
4.5.2	Laser properties for three type's media filter at a difference	102
	pressure (Δp) 0.4 bars at wavelength 623.8 He-Ne laser	
4.5.3	Laser properties for three type's media filter at a difference	103
	pressure (Δp) 0.6 bar at wavelength 623.8 He-Ne laser	
4.5.4	Laser properties for three type's media filter at a difference	104
	pressure (Δp) 0.2, 0.4, 0.6 bar at wavelength 623.8 He-Ne laser	
5	SUMMARY AND CONCLUSIONS	109
6	REFERENCES	118
ARABIC SU	JMMARY	

Table No.	LIST OF TABLES	Page No
1 1 0.	Criteria for Plugging Potential of Drin Irrigation System Water Sources	12
2.1	Cinteria for Flugging Fotential of Drip infigation System water Sources	12
2.2	Values used for the absorption of pure water in UV-A and UV-B wavelengths	35
3.1	Specifications of pumping unit	37
3.2	Specifications of ocean optics USB 650 made of USA	42
3.3	Specification of Media filter types tested in the experiment	47
3.4	PH and electrical conductivity (E.C) for types of media	48
3.5	Soluble salt percentage of tested media samples	48
3.6	CaCo ₃ % in the samples at different types	49
3.7	The Permeability of gravel material for types of media	50
3.8	Mechanical analysis of media properties samples	52
3.9	Physical properties of gravel samples	53
3.10	Water quality parameters for the SDI (surface drip irrigation) system	53
4.1	Performance evaluating of first filter using Local basalt media	58
4.2	Performance evaluating of second filter using Al-Abaster Misr Bank media	59
4.3	Performance evaluating of third filter using Ward El-Nile Zaffaran media	60
4.4	Optical properties results of first filter using Local basalt media at $\Delta P 0.2$ bar and TSS 51.8 mg/1	62
4.5	Optical properties results of first filter using Local basalt media at Δ P 0.4 bar and total suspended solids (TSS 115 mg/l)	65
4.6	Optical properties results of first filter using Local basalt media at Δ P 0.6 bar and TSS 268.8 mg/	68
4.7	Relationship between of absorption, reflection and Transmission Intensities, difference pressure (ΔP) and total suspended solids (TSS)	70
4.8	Optical properties of water from the second filter: using Al-Abaster Misr	72

	Bank media at a difference pressure (ΔP) 0.2 bar	
4.9	Optical properties of water from the second filter: using Al-Abaster Misr	75
	Bank media at a difference pressure (ΔP) 0.4 bar	
4.10	Optical properties of water from the second filter: using Al-Abaster Misr	78
	Bank media at a difference pressure (ΔP) 0.6 bar	
4.11	Relationship between of difference pressure (ΔP), absorption, reflection	80
	and Transmission Intensities, and total suspended solids (TSS) of water	
	from the second filter using Al-Abaster Misr Bank media	
4.12	Optical properties of water from the third filter: using Ward El-Nile	82
	Zaffaran media at a difference pressure (ΔP) 0.2 bar	
4.13	Optical properties of water from the third filter: using Ward El-Nile	85
	Zaffaran media at a difference pressure (ΔP) 0.4 bar	
4.14	Optical properties of water from the third filter: using Ward El-Nile	88
	Zaffaran media at a difference pressure (ΔP) 0.6 bar	
4.15	Relationship between of difference pressure (ΔP), absorption, reflection	90
	and Transmission Intensities, and total suspended solids (TSS) of water	
	from the second filter using Ward El-Nile Zaffaran media	
4.16	Descriptive analysis of TSS with deferent type of media of filter	93
4.17	Descriptive analysis of Wavelength with deferent type of media of filter	94
4.18	Analysis of Variance (ANOVA) for TSS with deferent type of media of	95
	filter	
4.19	Analysis of Variance (ANOVA) for wavelength with deferent type of	95
4 20		06
4.20	Descriptive analysis of TSS with pressure difference of filter	90
4.21	Descriptive analysis of Wavelength with pressure difference of filter	98
4.22	Analysis of Variance (ANOVA) for TSS with pressure difference of	99
	filter	
4.23	Analysis of Variance (ANOVA) for wavelength with pressure difference	99
	of filter	
4.24	Output of statistical analysis for pressure difference with TSS and	100
	wavelength	

Figure No.	LIST OF FIGURES	Page No.
2.1	Basic components of a localized irrigation system	5
2.2	Remote sensing technology	24
3.1	Photograph of the control head unit	38
3.2	Photograph of the media filter	38
3.3	Hydraulic test bench components	39
3.4	Photograph of the ocean optics USB 650	42
3.5	Experimental setup for quality evaluation of water quality	44
3.6	Photograph of the laboratory Irrigation system layout	46
3.7	Photograph of the laboratory test sieve analyses	50
3.8	Photograph of the media samples	50
3.9	Photograph of the sieve analyses of particle media	50
3.10	Cross section of built-in tubes	53
4.1	Relationship between light wavelength, absorption, transmission and reflection intensities at difference pressure 0.2 bar	63
4.2	Optical properties of water from first filter using Local basalt media at pressure differential (Δ P) 0.4 bar and TSS 115 mg/1	66
4.3	Optical properties of water from first filter using Local basalt media at pressure differential (Δ P) 0.6 bar and TSS 268.8 mg/1	69
4.4	Optical properties of water from the second filter: using Al-Abaster Misr Bank media at a difference pressure (ΔP) 0.2 bar	73
4.5	Optical properties of water from the second filter: using Al-Abaster Misr Bank media at a difference pressure (ΔP) 0.4 bar	76

4.6	Optical properties of water from the second filter: using Al-Abaster Misr	79
	Bank media at a difference pressure (ΔP) 0.6 bar	
4.7	Relationship between light wavelength and optical properties for water	83
	from the third filter using Ward El-Nile Zaffaran media at a difference	
	pressure (ΔP) 0.2 bar	
4.8	Relationship between light wavelength and optical properties for water	86
	from the third filter using Ward El-Nile Zaffaran media at a difference	
	pressure (ΔP) 0.4 bar	
4.9	Relationship between light wavelength and optical properties for water	89
	from the third filter using Ward El-Nile Zaffaran media at a difference	
	pressure (ΔP) 0.4 bar	
4.10	Relationship between total suspended solids, absorption and transmission	101
	intensities at difference pressure 0.2 bar for three type's media filter	
4.11	Relationship between total suspended solids, absorption and transmission	102
	intensities at difference pressure 0.4 bar for three type's media filter	
4.12	Relationship between total suspended solids, absorption and transmission	103
	intensities at difference pressure 0.6 bar for three type's media filter	
4.13	Relationship between total suspended solids, absorption and transmission	105
	intensities at difference pressure 0.2, 0.4, 0.6 bar for local basalt filter	
4.14	Relationship between total suspended solids, absorption and transmission	105
	intensities at difference pressure 0.2, 0.4, 0.6 bar for misr bank media	
	filter	
4.15	Relationship between total suspended solids, absorption and transmission	106
	intensities at difference pressure 0.2, 0.4, 0.6 bar for zaffaran media	
	filter.	
4.16	Relationship between total suspended solids, absorption and transmission	106
	intensities at difference pressure 0.2, 0.4, 0.6 bar for three type's media	
	filter.	
4.17	Relationship between total suspended solids, absorption and transmission	107
	intensities at difference pressure 0.2, 0.4, 0.6 bar for local basalt filter	

4.18	Relationship between total suspended solids, absorption and transmission	107
	intensities at difference pressure 0.2, 0.4, 0.6 bar for misr bank media	
	filter	
4.19	Relationship between total suspended solids, absorption and transmission	108
	intensities at difference pressure 0.2, 0.4, 0.6 bar for zaffaran media	
	filter	
4.20	Relationship between total suspended solids, absorption and transmission	108
	intensities at difference pressure 0.2, 0.4, 0.6 bar for three type's media	
	filter	