REGENERATION AND TRANSFORMATION USING GLUTAREDOXIN-2 GENE ON GRAPEVINE ROOTSTOCKS

By

AHMED AHMED MOHAMMED BARAKAT

B.Sc. Agric. Sci. (Genetics), Fac. Agric., El-Azhar Univ., Egypt, 2005 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Cairo University EGYPT

2020

Name of Candidate: Ahmed Ahmed BarakatDegree: Ph.D.Title of Thesis: Regeneration and Transformation using Glutaredoxin-2
gene on Grapevine rootstocksGlutaredoxin-2Supervisors: Dr. Mohamed Hassanen Soliman
Dr. Basita Abbas Hussein
Dr. Nahla Abd-Elfattah AwadApproval: 28 / 1 / 2020

ABSTRACT

This study was carried out to establish reliable techniques to be used for introducing GRX-2 gene into the two grapevine rootstocks (SO4 and Freedom). This approach was performed using Agrobacterium tumefaciens during the period from 2015 to 2019 at the Biotechnology Research Lab. and Plant Tissue Culture Lab. Horticulture Research Institute, Agricultural Research Center, Egypt. The aim of this work was to optimize an efficient transformation system for of the two rootstocks involving the GRX-2 gene by using Agrobacterium tumefaciens mediated technique. This gene donates recipient plant salinity tolerance and subjecting two rootstocks transgenic plants to salinity stress to evaluate their stress tolerance. Genetic transformation of an elite white poplar genotype SO4 and Freedom rootstocks was performed with the vector pRI 101-ON DNA in Agrobacterium tumefaciens strain LBA4404 containing the Glutaredoxin-2 gene in order to enhance the resistance to abiotic stress. The time period of axillary buds infection with Agrobacterium tumefaciens suspension culture (0, 10, 20 and 25 min with different cnocentration of kanamycin in ³/₄MS media) was tested for the transformation frequency. The highest frequency of transformation was obtained with axillary bud explants infected with Agrobacterium culture for 10 minutes at the concentration of OD $_{600}$ = 0.8 with Kanamycin 100mg/l. Molecular analysis using PCR proved the presence and integration of the transgenes in the genome of the transgenic plants. Field experiments were conducted to investigate the effect of the introduced *GRX-2* gene on two rootstocks at salt concentrations (0, 2000, 2500) and 3000 ppm). The data showed that the transgenic lines expressed different levels of salt tolerance as expressed by the performance of vegetative characters (plants plant height, number of leaves, root length and stem diameter), pigments contents (chlorophyll A, B and carotenoids), total Phenol, proline content and enzymes activity. These results show that the *GRX-2* gene enhance salt tolerance character.

Key words: Agrobacterium, rootstocks, SO4, Freedom, Glutaredoxin-2, isozymes, salinity, pigment content, proline.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. In vitro micropropagation of Grapevine
2. Genetic transformation of grapevine
3. Glutaredoxin-2 (GRX-2) gene and salt tolerance
4. Salinity stress in agriculture
5. Using RT-PCR
MATERIALS AND METHODS
RESULTS AND DISCUSSION
1. SO4 and Freedom rootstocks micropropagation through
axillary-buds explant
2. SO4 and Freedom grapevine rootstocks transformation.
a. The isolated plasmid of transgenic A. tumefaciens
b. Integration of the GRX-2 gene in SO4 and Freedom
rootstocks
3. Effects of salinity on SO4 and Freedom rootstocks
A. The effect of salinity levels on Plant growth characters
1. Tissue culture
2. Acclimatization
B. The effect of salinity levels on chemical contents
1. Plant pigment contents
2. Total phenols
3. Proline content
4. Enzymes activity
4. Molecular analysis of the putative transgenic plants
A. Polymerase chain reaction (PCR) analysis
B. Reverse transcriptase PCR
SUMMARY
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Glutaredoxin-2 gene specific primers sequences used for PCR analysis	55
2.	Effect of sterilization treatments on the survival percentage of axillary bud SO4 and Freedom rootstocks	73
3.	Survival percentage and vegetative growth characters of the SO4 and Freedom grapevine rootstocks during the rooting stage.	76
4.	Effect of different inoculation and periods (min) with A. tumefaciens suspension on the vegetative growth of SO4 & Freedom grapevine rootstocks during shoot establishment stage.	85
5.	Effect of different inoculation and periods (min) with <i>Agrobacterium tumefaciens</i> suspension on the vegetative growth of SO4 & Freedom (Free.) grapevine rootstocks during rooting stage	91
6.	Effect of different concentrations to NaCl (ppm) on survival percentage, shoot length (cm) and leave numbers in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during establishment stage.	96
7.	Effect of different concentrations to NaCl (ppm) on survival percentage, shoot length (cm) and shoot numbers in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during multiplication stage	103
8.	Effect of different concentrations to NaCl (ppm) on leave numbers and node numbers in transgenic (Trans.) and non- transgenic (Non-trans) of two rootstocks during multiplication stage	106
9.	Effect of different concentrations to NaCl (ppm) on survival percentage and plantlet length (cm) in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during rooting stage.	111

10.	Effect of different concentrations to NaCl (ppm) on leave numbers, leave area (cm ²) and node numbers in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during rooting stage.	115
11.	Effect of different concentrations to NaCl (ppm) on root numbers and root length (cm) in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during rooting stage	120
12.	Effect of different concentrations to NaCl (ppm) on survival percentage, plant length (cm) and shoot numbers in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during acclimatization stage	124
13.	Effect of different concentrations to NaCl (ppm) on node numbers, leave numbers and leave area (cm ²) in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during acclimatization stage	132
14.	Effect of different concentrations to NaCl (ppm) on stem diameter (mm) and root length (cm) in transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks during acclimatization stage	135
15.	Plant pigments content (chlorophyll A, B and total chlorophyll A+B) mg/g f.wt in leaves of transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks acclimatized	142
16.	Plant pigments content (Carotenoid) mg/g f.wt and Total phenol (mg/100g d.wt (g)) in leaves of transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks acclimatized.	146
17.	Effect of different concentrations to NaCl (ppm) on free proline (mg/100g f.wt) in leaves of transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks	149
19.	Effect of different concentrations to NaCl (ppm) on enzymatic activity (Catalase (CAT) and Superoxide dismutase (SOD)) ug/g f.wt in leaves of transgenic (Trans.) and non-transgenic (Non-trans) of two rootstocks	156

LIST OF FIGURES

No.	Title	Page
1.	Plasmid map of the transformation vector pRI 101-ON DNA <i>GRX-2</i> gene	51
2.	Effect of sterilization treatments on survival percentage of axillary bud SO4 and Freedom rootstocks	74
3.	SO4 and Freedom grapevine rootstocks during the plantlet stage	75
4.	Survival percent of the SO4 and Freedom grapevine rootstocks during the rooting stage	76
5.	Vegetative growth characters of the SO4 and grapevine Freedom rootstocks during the rooting stage	78
6.	Single colony of <i>Agrobacterium tumefaciens</i> strain LBA4404 was grown on solid LB medium	79
7.	Plasmid DNA was isolated from transgenic <i>Agrobacterium tumefaciens</i> colony, M: Molecular DNA marker (1kb); P: plasmid DNA isolated from <i>Agrobacterium tumefaciens</i>	80
8.	PCR results of transgenic <i>Agrobacterium</i> -plasmids. M: Molecular DNA marker (1kb); C: negative control (non-transgenic); C ⁺ : positive control (plasmid carrying the <i>GRX-2</i> gene)	80
9.	Verification of glutaredoxin-2 (<i>GRX-2</i>) into putative transgenic of the two rootstocks. M: Molecular DNA marker (1kb); (C1): negative control (un-transformed SO4)	82
10.	Effect of different inoculation periods (0, 5, 10 and 20 min) with <i>Agrobacterium tumefaciens</i> on vegetative growth of Freedom (A) & SO4 (B) rootstocks during the rooting stage	87
11.	Survival (%) in transgenic and non-transgenic of two rootstocks subjected to different salinity levels in ³ / ₄ MS medium.	97

12.	Shoot length in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	98
13.	Leave numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	99
14.	Survival (%) in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium in multiplication stage	101
15.	Shoot length in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	102
16.	Shoot number in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	104
17.	Leave numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	105
18.	Histogram illustrating the node numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	108
19.	Survival (%) in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	109
20.	Effect of different concentrations to NaCl (ppm) on vegetative growth of transgenic (A1) and non-transgenic (A2) in Freedom & transgenic (B1) and non-transgenic (B2) in SO4 rootstocks	112
21.	Plantlets length in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	113
22.	Leave numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	114
23.	Leave area in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	116
24.	Node numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	117
25.	Root numbers in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	118

26.	Root length in transgenic and non-transgenic of two rootstocks under salt stress in ³ / ₄ MS medium	121
27.	Survival % in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage, under salt stress	122
28.	Plant length in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress.	125
29.	Shoot numbers in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	126
30.	Effect of the different concentrations to NaCl (ppm) on vegetative growth of transgenic (A) and non-transgenic (B) Freedom rootstock during acclimatization stage	127
31.	Effect of the different concentrations to NaCl (ppm) on vegetative growth of transgenic (A) and non-transgenic (B) SO4 rootstock during acclimatization stage	128
32.	Leave numbers in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	129
33.	Node numbers in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	130
34.	Leave area in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	133
35.	Stem diameter in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	134
36.	Root length in transgenic and non-transgenic of SO4 and Freedom rootstocks in acclimatization stage under salt stress	136
37.	PCR results of glutaredoxin-2 (<i>GRX-2</i>) gene transgenic Freedom rootstock in the lift and SO4 in the right. M:	

	Molecular DNA marker (1kb); (-C): negative control (non-transgenic)	158
38.	Verification of <i>GRX-2</i> gene expression into transgenic grapevine rootstocks via RT-PCR analysis	159