

Suez Canal University Faculty of Veterinary Medicine Department of Food Hygiene and control

Control of Foodborne Pathogens in Kofta Using Sumac Extract

Ph.D. Thesis

Presented by

Salma Jamal Ibrahim Mohamed

(B. V. Sc., Faculty of Veterinary Medicine, Suez Canal University, 2010) (M. V. Sc., Faculty of Veterinary Medicine, Suez Canal University, 2015)

for

Ph.D. Degree of Veterinary Medical Sciences

in

Hygiene and Control of Meat, Fish and their Products and Animal byproducts

Under Supervision of

Prof. Dr. Ali Meawad Ahmed

Professor of Meat Hygiene

Dean of Faculty of Veterinary Medicine

Arish University

Prof. Dr.

Takwa Hessien Ismail

Head Researcher of Food Hygiene and Control Department of Food Hygiene Animal Health Research Institute-Ismailia branch

Faculty of Veterinary Medicine Suez Canal University (2020)

Author	Salma Jamal Ibrahim Mohamed
Title	Control of Foodborne Pathogens in Kofta Using Sumac Extract
Faculty	Veterinary Medicine, Suez Canal University
Department	Food Hygiene and Control
Degree	Doctor of Philosophy
Language	English
Supervision committee	 Prof. Dr/Ali Meawad Ahmed Professor of Meat Hygiene Dean of Faculty of Veterinary Medicine Arish University Prof. Dr./ Takwa Hessien Ismail Head Research of Food Hygiene and Control Department of Food Hygiene and Control Animal Health Research Institute, Ismailia branch.
Abstract	First part of the study, 30 raw kofta samples collected from different supermarkets in Ismailia city subjected to bacteriological examination as total psychrotrophic, <i>Staphylococcus aureus</i> , Enterobacteriaceae count and isolation and identification of <i>Escherichia coli</i> and salmonella. Results revealed that mean values of total psychrotrophic, <i>Staphylococcus aureus</i> and Enterobacteriaceae count were $2.2 \times 10^5 \pm 6.6 \times 10^4$ cfu/g, $6.2 \times 10^3 \pm 2.4 \times 10^3$ cfu/g and $2 \times 10^4 \pm 3 \times 10^3$ cfu/g, respectively while <i>Escherichia coli</i> detected in 6.67% of samples, identified to O ₁₈ and O ₁₂₅ , and confirmed by cPCR technique. On the other hand, kofta samples were free from salmonella. Second part, examined the effect of sumac spices, Among the tested bacteria. <i>Staphylococcus aureus</i> found to be more sensitive than <i>Escherichia coli</i> . The effect of sumac spices at concentration 1%, 2.5 and 5% (w/v) on total psychrotrophic, <i>Staphylococcus aureus</i> and Enterobacteriaceae count investigated and there were significant differences (P<0.05) found between treated groups with sumac and untreated one. Sumac spice found to be effective against all the tested organisms and decrease microbial load. The extract prolongs the shelf life of kofta and enhances sensory characters.
Key words	Psychrotrophic bacteria-Enterobacteriaceae-Staphylococcus aureus-Escherichia coli-Salmonella-Sumac spice extract

Contents

Subject	Pages
1-Introduction	1
2-Review of Literature	4
2.1. Sources of microbial contaminations of meat and meat products	4
2.2.Microbiologicazl indices	7
2.2.1. Incidence of Psychrotrophic bacteria	7
2.2.2. Incidence of Staphylococcus aureus	11
2.2.3. Incidence of Enterobacteriaceae bacteria	17
2.2.4. Incidence of Escherichia coli	20
2.2.5. Incidence of salmonella	24
2.3. Public health hazards of foodborne pathogens	
2.4. Improving the quality of different meat products using sumac spice extracts	
3-Material and Methods	
4-Results	55
5-Discussion	86
6-Conclusion and Recommendations	
7-English Summary	
8-References	111
Arabic Summary	

List of Tables

No.	Table Title	Pages
Table A.	Alkaline phosphatase gene <i>phoA</i> uniplex PCR Master Mix preparation	43
Table B.	Shiga toxins genes (stx_1 and stx_2) duplex PCR Master Mix preparations	44
Table C.	Cycling conditions of the different primers during cPCR	44
Table D.	Oligonucleotide primers sequences	45
Table E.	Sensory Schema	53
Table 1.	Positive and negative results of bacterial profile in kofta samples (n=30)	55
Table 2.	Statistical analytical results for total Psychrotrophic count (cfu/g) in kofta samples	56
Table 3.	Frequency distribution of total Psychrotrophic count among the kofta samples	57
Table 4.	Number and percentages of acceptable Psychrotrophic count among the kofta samples based on Egyptian Standard	58
Table 5.	Statistical analytical results for <i>Staphylococcus aureus</i> count (cfu/g) in kofta samples	59
Table 6.	Frequency distribution of <i>Staphylococcus aureus</i> (cfu/g) in the examined kofta samples	60
Table 7.	Number and percentages of acceptable kofta samples for	61

	Staphylococcus aureus count based on Egyptian Standard	
Table 8.	Statistical analytical results for Enterobacteriaceae count (cfu/g) in the kofta samples	62
Table 9.	Frequency distribution of <i>Escherichia coli</i> serotypes isolated from kofta	63
Table 10.	Conventional Polymerase chain reaction (cPCR) for detection of alkaline phosphatase gene (<i>phoA</i>) and shiga toxin genes (<i>sxt</i> ₁ and sxt_2)	64
Table 11.	Sensitivity test of sumac spice extract against <i>Staphylococcus aureus</i>	65
Table 12.	Sensitivity test of sumac spice extract against Escherichia coli	66
Table 13.	Mean value of sensory evaluation of treated kofta samples after grilled at zero day	67
Table 14.	Mean values of color in treated kofta samples during storage at $(4^{\circ}C)$	68
Table 15.	Mean values of consistency in treated kofta samples during storage $(4^{\circ}C)$	69
Table 16.	Mean values of odor in treated kofta samples during storage (4°C)	70
Table 17.	Effect of sumac spice extract on total Psychrotrophic count (cfu/g) in the treated kofta samples	71
Table 18.	Reduction percent of total Psychrotrophic count (cfu/g) in the treated kofta samples with sumac spice extract at concentrations 1%	72
Table 19.	Reduction percent of total Psychrotrophic count (cfu/g) in the treated kofta samples with sumac spice extract at concentrations 2.5%	73

Table 20.	Reduction percentage of total Psychrotrophic count (cfu/g) in the treated kofta samples with sumac spice extract at concentrations 5%	74
Table 21.	Significant mean value of total Psychrotrophic count (cfu/g) in the treated kofta samples	75
Table 22.	Effect of Sumac spice extracts on <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples	76
Table 23.	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 1%	77
Table 24.	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 2.5%	78
Table 25.	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 5%	79
Table 26	Significant mean value of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples	80
Table 27	Effect of Sumac spice extract on total Enterobacteriaceae count (cfu/g) in the treated kofta samples	81
Table 28	Reduction percentage of Enterobacteriaceae count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 1%	82
Table 29	Reduction percentage of Enterobacteriaceae count(cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 2.5%	83
Table 30	Reduction percentage of Enterobacteriaceae count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 5%	84
Table 31	Significant mean value of total Enterobacteriaceae count (cfu/g) in the treated kofta samples	85

List of Figures

No.	Figure Title	Page
Figure 1.	Bacterial profile in the kofta samples (n=30)	55
Figure 2.	Total Psychrotrophic count (cfu/g) in the kofta samples	56
Figure 3.	Frequency distribution of total Psychrotrophic count among the kofta samples	57
Figure 4.	Illustrate for total Psychrotrophic count among the kofta samples based on Egyptian Standard	58
Figure 5.	Statistical analytical results for <i>Staphylococcus aureus</i> count (cfu/g) in the kofta samples	59
Figure 6.	Illustrate for <i>Staphylococcus aureus</i> (cfu/g) in the kofta samples	60
Figure 7.	Accepted and rejected samples according to Egyptian Standard for total <i>Staphylococcus aureus</i> count limits	61
Figure 8.	Illustrate for Enterobacteriaceae count (cfu/g) in the kofta samples.	62
Figure 9.	Frequency distribution of <i>Escherichia coli</i> serotypes isolated from kofta	63
Figure 10.	Mean value of sensory evaluation of treated kofta samples after grilled at zero day	67
Figure 11.	Color scores for treated kofta samples during storage (4°C)	68
Figure 12.	Consistency scores for treated kofta samples during storage (4°C)	69
Figure 13.	Odor scores for treated kofta samples during storage (4°C)	70
Figure 14.	Mean values of total Psychrotrophic count (cfu/g) in the treated kofta samples	71

Figure 15.	Illustrate for reduction percentages of total Psychrotrophic count (cfu/g) at 1% of sumac spice extract	72
Figure 16.	Illustrate for reduction percent of total Psychrotrophic count (cfu/g) at 2.5% of sumac spice extract	73
Figure 17.	Illustrate for reduction percent of total Psychrotrophic count (cfu/g) at 5% of sumac spice extract	74
Figure 18.	Illustrate for the effect of sumac spice extract on total <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples	76
Figure 19	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 1%	77
Figure 20	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 2.5%	78
Figure 21	Reduction percentage of <i>Staphylococcus aureus</i> count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 5%	79
Figure 22	Effect of Sumac extract on total Enterobacteriaceae count (cfu/g) in the treated Kofta samples	81
Figure 23	Reduction percentages of Enterobacteriaceae count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 1%	82
Figure 24	Reduction percentage of Enterobacteriaceae count (cfu/g) in the treated Kofta samples with Sumac spice extract at concentrations 2.5%	83
Figure 25	Reduction percentage of Enterobacteriaceae count (cfu/g) in the treated kofta samples with Sumac spice extract at concentrations 5%	84

List of Images

No.	Image Title	Page
Image1.	Fresh sumac (Rhus coriaria) fruit in the autumn season	49
Image 2.	Illustrate sumac spice collected from Ismailia markets	49
Image 3.	Illustrate the sumac final dried extract residue and after adding sterile propylene glycol	50
Image 4.	Agarose gel electrophoresis of amplified <i>phoA</i> gene and Shiga toxin genes PCR product	64

List of Abbreviations

EOS	Egyptian Organization for Standardization and Quality
WHO	World Health organization
S .aureus	Staphylococcus aureus
E. coli	Escherichia coli
Stx	Shiga toxin gene
PhoA	Alkaline phosphatase gene
ICMSF	International Commission on Microbiological Specification for Food
ISO	International Organization for Standardization
FSIS	Food Safety and Inspection Service
АРНА	American Public Health Association
ASTM	American society for testing and materials
cPCR	Conventional Polymerase chain reaction
SPSS	Statistical Package for Social Science
BP	Base pair
GHP	Good hygienic practices
FDA	Food and Drug administration
GHM	Good hygienic manufactures
NCCLS	National Committee for Clinical Laboratory Standards,