Suez Canal University Faculty of Agriculture Animal Production Department

Evaluation and Utilization of Silage of some Roots and Tubers as Feed for Ruminants

By

Mohamed Abd-Elalem Ahmed Zaki

B.Sc. Agric. Sci. (Animal Production) Faculty of Agriculture, Zagazig University, 2007 M.Sc. Agric. Sci. (Animal Production) Faculty of Agriculture, Suez Canal University, 2015

> Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of

DOCTOR OF PHILOSOPHY IN AGRICULTURE SCIENCE IN ANIMAL PRODUCTION

Animal Production Department Faculty of Agriculture Suez Canal University

2020

Name	Mohamed Abd-Elalem Ahmed Zaki
University	Suez Canal
Faculty	Agriculture
Department	Animal production
Post Graduate	PhD degree
Studies	
Title of thesis	Evaluation and utilization of silage of some roots and tubers as feed for ruminants
Supervisors	Prof. Dr. Ahmed Ahmed Osman
	Prof. Dr. Elsayed Soliman Mohamed Soliman
	Dr. Abdelghany Hassanin Abdelghany
Registration	
date	February 2016

ABSTRACT

Silage of roots and tubers were studied. Silage of potato tubers, sweet potato roots and turnip roots with rice straw or wheat straw without or with urea was making manually in jars and manually and automatically in bags. The rams were used for evaluating seven experimental rations as follows: Ration A: 100% of CP requirements according to NRC (1985) from concentrate Feed Mixture (CFM) + rice straw ad lib. Rations B, C, D, E, F and G were fed 60% of CP requirements from CFM + silages of potato, sweet potato, turnip of B, C and D, respectively and silages of potato, sweet potato, turnip containing 0.5% urea of E, F and G, respectively. Silages were fed *ad lib*. Digestion coefficients and rumen parameters were carried out by rams to evaluate rations A, B, C, D, E, F and G. Twenty-four local growing lambs were divided into four groups (6 in each) to evaluate rations A, B, C and D.

Silage fermentation characteristics of different experimental silages indicated that all silages a good quality. Daily feed intake of rations by rams and growing lambs of ration A (control) were higher than all rations while feed intake of rations containing silages was nearly similar. pH was decreased and ammonia-N and VFA was increased at 2 and 4h post feeding than before feeding. The ammonia-N of rations containing silages with urea was significantly higher than control and rations containing silages without urea.

The ration D (containing turnip silage) had highest DBG, best feed conversion, lowest feed cost and highest economical efficiency, while these values were nearly similar in rations B and C (containing potato or sweet potato silages). The bad values were recorded with control of growing lambs.

LIST OF CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURES	3
1 Yield production of potato sweet potato and turnin	5 4
1 1 Potato (Solanum tuberosum)	4
1.2 Sweet potato (Inomoea batatas)	4
1.3. Turnin (<i>Brassica rana</i>)	4
2. Chemical composition of Potato. Sweet potato and Turnip	5
2.1. Potato	6
2.2. Sweet potato	7
2.3. Turnip	8
3. Silages of Potato, Sweet potato and Turnip	9
3.1. Chemical composition of silage	9
3.1.1. Potato silage	9
3.1.2. Sweet potato silage	11
3.1.3. Turnip silage	11
3.2. Fermentation quality characteristics of silages	11
3.2.1. pH value	11
3.2.2. Ammonia-N (NH ₃ -N)	14
3.2.3. Acetic acid	14
3.2.4. Butyric acid	15
3.2.5. Lactic acid	15
3.3. Losses of nutrients in silage	19
4. Feed intake	20
5. Digestion coefficients and nutritive values	22
5.1. In vitro digestibility	22
5.2 In vivo digestibility	23
5.3. Nutritive values	23
6. Rumen fermentation parameters	25
6.1. Rumen liquor pH values	25
6.2. Rumen ammonia-nitrogen (NH3-N) concentrations	26
6.3. Rumen total volatile fatty acids (TVFA's) concentration	26
6.4. Rumen microbial protein	27
7. Growth performance	29
8. Feed conversion and feed efficiency	29
9. Economical efficiency	30
MATERIALS AND METHODS	31
Experimental procedures	31
1. Silage making from tubers and roots	31
1.1. Making silage in jars	31
1.2. Making silage manually in bags	31
1.3. Making silage automatically in bags	33
2. Feeding trials of sheep	33
2.1. Feeding trials of rams	33
2.2. Feeding trials of growing lambs	34
3. Sampling for chemical analysis	36
4. Silage fermentation quality parameters	37

Page

5. Rumen fermentation parameters	38	
6. Statistical analysis		
RESULTS AND DISCUSSIONS		
1. Chemical composition	40	
1.1. Chemical composition of potato tubers, sweet potato roots and turnip roots,	40	
concentrate feed mixture (CFM), rice straw (RS), wheat straw (WS).		
1.2. Chemical composition of silages of potato tubers, sweet potato roots and turnip	41	
roots		
2. Silage fermentation quality characteristics	46	
3- Digestibility trials of rams	55	
3.1. Feed intake	55	
3.2. Digestion coefficients	56	
3.3. Nutritive values	58	
3.4. Feed unit's intake	59	
4. Rumen fermentation parameters of rams	59	
4.1. Ruminal pH values of rams	59	
4.2. Ammonia- nitrogen (NH3-N) concentrations in the rumen of rams	60	
4.3. Total volatile fatty acids (TVFA's) concentration in the rumen of rams	61	
4.4. Microbial protein in the rumen of rams	62	
5. Feeding trails of growing lambs	64	
5.1. Digestibility trials of growing lambs	64	
5.1.1. Feed intake of growing lambs	64	
5.1.2. Digestion coefficients and nutritive values of growing lambs	66	
6. Rumen fermentation parameters of growing lambs	67	
6.1. Ruminal pH values of growing lambs	67	
6.2. Ammonia- nitrogen (NH3-N) concentrations in the rumen of growing lambs	68	
6.3. Total volatile fatty acids (TVFA's) concentration in the rumen of growing lambs	68	
6.4. Microbial protein in the rumen of growing lambs	69	
7.Growth Performance	71	
7.1. Feed intake of growing lambs	71	
7.2. Body weight gain	72	
7.3. Feed conversion	73	
7.4. Feed cost and economical efficiency	74	
Conclusion	75	
SUMMARY		
REFFERENCES	84	
ARABIC SUMMARY		

LIST OF TABLES

NO.	Tables	Page
1	Potato tubers, Sweet potato roots and Turnip roots area (feddan) and yield production (ton) in Egypt through the year 2015/2016	5
2	Chemical composition (%) of silages is containing Potato tubers as reported by some authors.	10
3	Chemical compositions (%) of silages are containing sweet potato roots as reported by some authors.	12
4	Fermentation quality characteristics of silages are containing potato, sweet potato and turnip as reported by some authors.	17
5	Digestion coefficients% of silages and the rations containing silages as reported by some authors	24
6	Rumen fermentation parameters as reported by some authors.	28
7	Contents of different silages forms from Potato tubers, Sweet potato roots and	32
8	Turnip roots with Rice straw or Wheat straw with or without urea additives. Chemical composition of potato tubers, sweet potato roots, turnip roots, CFM, RS_WS_as fresh and on DM basis	41
9	Chemical composition (%) of experimental silages ensiling from potato, sweet potato and turnip with rice straw with or without urea in jars	42
10	Chemical composition (%) of experimental silages ensiling from potato, sweet potato and turnip with wheat straw with or without urea in jars	43
11	Chemical composition (%) of different experimental silages ensiling from potato, sweet potato and turnip with rice straw with and without urea fed by rams	44
12	Chemical composition (%) of different experimental silages ensiling from potato sweet potato and turnin with rice straw fed by growing lambs	45
13	Silage fermentation quality characteristics of different silages with RS and with WS without urea additives in experimental jars	47
14	Silage fermentation quality characteristics of different silages with 0.5 % urea with RS and with WS in experimental jars	48
15	Silage fermentation quality characteristics of different silages with 1 % urea with RS and with WS in experimental jars	49
16	Silage fermentation quality characteristics of different silages fed by rams with or without urea additives	50
17	Silage fermentation quality characteristics of different silages fed by growing lambs	52
18	Intake of experimental rations with or without urea additives by rams	56
19	Calculated chemical composition (%) of different rations with and without urea additives fed by rams (on DM basis)	56
20	Digestion coefficients and nutritive values (%) of experimental rations with or without urea additives by rams	58
21	Feed units' intake of rams fed experimental rations with or without urea additives	59
22	Rumen fermentation parameters (pH, ammonia-N (NH3-N) Total VFA's, Microbial protein (MP) in rumen fluid of rams fed experimental rations with or without urea additives	62
23	Intake of experimental rations by growing lambs in digestibility trial	65

24	Calculated chemical composition (%) of different rations fed by growing lambs	65
	(on DM basis)	
25	Digestion coefficients and nutritive values (%) of experimental rations by growing lambs	67
26	Rumen fermentation parameters (pH, ammonia-N (NH3-N) Total VFA's, MP in rumen fluid of growing lambs fed experimental rations	69
27	Average daily intake and feed units' intakes of experimental ration by growing	72
28	Average live body weight (ABW) and average daily body gain (DBG) of	73
	growing lambs fed experimental rations	
29	Feed conversion and feed efficiency of growing lambs fed experimental rations	74
30	Feed intake as fed, feed cost and economical efficiency of lambs fed experimental rations	75

LIST OF FIGURES

NO.	Figures	Page
1	pH of rams	63
2	NH3-N of rams	63
3	TVFA's of rams	63
4	Microbial protein (g/100ml rumen fluid) of rams	64
5	pH of growing lambs	70
6	NH3-N of growing lambs	70
7	TVFA's of growing lambs	71
8	Microbial protein (g/100ml rumen fluid) of growing lambs	71