

Detection of aflatoxin M1 and some heavy metals as contaminant of raw milk

A thesis submitted by

Amira Ibrahim Ahmed Moussa

B. V. Sc., Fac. Vet. Med., Kafrelsheikh Univ, (2010)

M. V. Sc., Fac. Vet. Med., Kafrelsheikh Univ, (2015)

Submitted to Fac. Vet. Med., Kafrelsheikh Univ Food Control Department (Milk Hygiene) For obtaining Ph.D. degree in Veterinary Medical Sciences (2020)

Under supervision of

Prof. Dr. Azza Mahmoud Kamel

Hassanin Sobeih Professor of Milk Hygiene Faculty of Veterinary Medicine Kafrelsheikh University

Prof. Dr. Ibrahim Ibrahim AL–Hawary

Dean of Faculty of Aquatic and Fisheries Sciences Professor of Milk Hygiene Kafrelsheikh University

Dr. Walaa Mohamed Elkassas

Senior Researcher of Food Hygiene in Animal Health Research Institute (Kafr El-Sheikh branch

Detection of aflatoxin M1 and some heavy metals as contaminant of raw milk

by Amira Ibrahim Ahmed Moussa

Abstract

This study analyzed 50 raw milk samples collected randomly from different supermarkets in Kafr El-Sheikh Governorate for detection of aflatoxin M1 and some heavy metals (Cu, Zn, Pb and Cd); and apply some trials for AFM1 detoxification in artificially contaminated raw milk by using natural clay and yoghurt manufacturing. Results showed high level of AFM1 contamination (ranged from 1.4 to16.2 ppb) in these samples. And by adding Kaolin and Cabentonite at different amounts (2.5; 5 and 10g/100ml milk) separately to artificially contaminated milk; results revealed a significant effect in the reduction of AFM1 level compared with the control sample (AFM1=116.2 ng/L) as AFM1 level decrease to (12.73, 7.8 and 16.13 ng/L) and (7.33, 4.33 and 2.66 ng/L) with three different amounts of both clays, respectively. Also yoghurt manufacturing revealed significant effect in AFM1 detoxification as AFM1 level (116.2 ng/L) decreased to 7.66 ng/L at 5th day of storage period. When analyzed the second part of 50 samples for heavy metals residues the results showed that Cu and Zn was detected in 20% and 100%, respectively. But, Pb and Cd failed to be detected the examined samples.

CONTENTS

Title	page
List of tables	ii
List of Figures	iii
LIST OF ABBREVIATION	i
1.Introduction	1
2.Review of Literature	4
3.Materials and Methods	25
4.Results	32
5.Discussion	40
6.Summary	48
7.Conclusion and Recommendations	51
8.References	53
9.Arabic Summary	

List of tables

Table	Title	page
No		
1	Statistical analytical results of AFM1 content in the	32
	examined raw milk samples	
2	Comparison of AFM1 positive milk samples with the	32
	Egyptian, European and US limits	
3	Frequency distribution of positive milk samples based	32
	on AFM1 concentrations	
4	Detoxification of AFM1 in artificially contaminated	33
	raw milk samples in relation to added amount of kaolin	
5	Detoxification of AFM1 in artificially contaminated	35
	raw milk samples in relation to added amount of Ca-	
	bentomte	
6	Statistical analytical results of AFM1content and pH	38
	value of the manufactured yoghurt samples	
7	Statistical analytical results of heavy metals (Cu, Zn,	39
	Cd, Pb) estimation in the examined raw milk samples	
8	Comparing the positive raw milk samples with	39
	maximum permissible limit (M.P.L) of heavy metals	
	cited by IDF (1979)	

List of Figures

Fig.	Title	Page
No.		
1	Standard curve for result calculations	27
2	AFM1concentration in artificially contaminated raw	33
	milk samples in relation to added amount of kaolin	
3	Effect of adding kaolin at different amounts on AFM1	34
	content (116.2ng/L) in artificially contaminated raw	
	milk samples	
4	Results of chemical composition analysis of artificially	34
	contaminated raw milk samples in relation to added	
	amounts of kaolin	
5	AFM1 concentration in artificially contaminated raw	35
	milk samples in relation to added amount of Ca-	
	bentonite.	
6	Effect of adding Ca- bentonite at different amounts on	36
	AFM1 content (116.2ng/L) in artificially contaminated	
	raw milk samples.	
7	Results of chemical composition analysis of artificially	36
	contaminated raw milk samples in relation to added	
	amounts of Ca- bentonite.	
8	Comparison between kaolin and Ca -bentonite	37
	detoxification effect and the recovery of AFM1 in the	
	artificially contaminated raw milk	
9	Comparison between AFM1 reduction% by adding	37
	kaolin and Ca –bentonite in the artificially	
	contaminated raw milk	
10	Reduction % of AFM1 in the manufactured yoghurt	38
	samples	

LIST OF ABBREVIATION

μg	Micro gram
AAS	Atomic Absorption Spectrophotometer
AFB1	Aflatoxin B1
AFM1	Aflatoxin M1
Afs	Aflatoxins
АРНА	American Public Health Association
Cd	Cadmium
CEC	Cation Exchange Capacity
Cu	Cupper
DVS	Direct Vat Set
EC	European Commission Regulation
EFSA	European Food Safety Authority
ELISA	Enzyme Linked Immunosorbant Assay
EPA	Environmental Protection Agency
ES	Egyptian Organization for Standardization and Quality Control.
EU	European Union
FAO/WHO	Food and Agriculture Organization/World Health
	Organization
FDA	Food and Drug Administration
Fe	Iron
GRAS	Generally Recognized As Safe
НСС	Hepatic Cellular Carcinoma
HPLC	High Performance Liquid Chromatography
hr.	Hour
HSCAS	Hydrated Sodium Calcium Alumino Silicate
IARC	International Agency for Research on Cancer

IDF	International Dairy Federation
IU	International Unit
JECFA	Joint FAO/WHO Expert Committee on Food
	Additives
LAB	Lactic Acid Bacteria
L.bulgaricus	Lactobacillus bulgaricus
Mg	Milligram
MPL	Maximum Permissible Limit
MRLs	Minimum Risk Levels
ND	Not detected
ng/L	Nano gram per litre
Pb	Lead
PDI	Probable Daily Intake
Ppm	part per million
Ppb	part per billion
Ppt	part per trillion
PTDI	Provisional Tolerable Daily Intake
PTMI	Provisional Tolerable Monthly Intake
PTWI	Provisional Tolerable Weekly Intake
S.thermophilus	Streptococcus thermophiles
WHO	World Health Organization
Zn	Zinc