

Cairo University Faculty of Veterinary Medicine Department of Virology

Molecular Characterization and Cytopathogenecity of Lumpy Skin Disease Virus in Egypt

A Thesis Submitted by

Mohamed Mahmoud Mashaly

(B.V.Scs. Fac. Vet. Med., Cairo Univ., 2012)

For The Master Degree in Veterinary Medical Sciences

(Virology)

Under supervision of

Hussein Aly Hussein Ahmed

Professor of Virology and Vice Dean for Post-graduate studies & Scientific Research Affairs Faculty of Veterinary Medicine Cairo University

Ayman Hany Mahmoud El-Deeb

Assistant Professor of Virology Faculty of Veterinary Medicine Cairo University

Momtaz Abd-El Hady Shahein

Chief Researcher of Virology Virology Research Department Director of Animal Health Research Institute, Dokki-Giza Faculty of Veterinary Medicine Department of Virology Cairo University

Name: Mohamed Mahmoud Mohamed Mashaly Nationality: Egyptian Date of birth: 19/ 05 / 1990 Place of birth: Cairo Specification: Virology Thesis title:

Molecular Characterization and Cytopathogenecity of Lumpy Skin Disease Virus in Egypt

Abstract

Lumpy skin disease virus (LSDV) still has a constant threat and causing a serious economic burden to cattle and buffaloes in Egypt. Recently, LSD has been aggressively distributed in different governorates of Egypt causing severe losses in animal wealth. The progressive shift of the outbreak in Egypt during 2018 raised concerns that the disease continue to spread despite excessive vaccination campaigns. This study was carried out to molecularly characterize LSDV strains circulating in Egypt during 2016 to 2019 outbreaks based on PCR assay targeting the GPCR and P32 genes. Also, study the growth kinetic of recent LSDV isolate to determine the culture properties of recent LSDV isolate that could be useful to develop more effective LSDV vaccine and diagnostic purposes. One hundred eighty one tested samples were positive for LSDV with different Ct values and a total of 159 samples were positive using gel-based PCR assay specific for LSDV. Phylogenetic analysis showed that the GPCR and P32 genes of recent LSDV circulating in Egypt fall within the cluster of field LSDV found worldwide with an overall 98.9-100% nucleotide identity and did not reveal significant genetic variations when compared with LSDV previously characterized in Egypt, indicating that all circulating strains in Egypt in this period more genetically closest to local reference strain, LSDV Egypt/89 Ismailia and LSDV isolate Evros/GR/15 than to vaccine SPPV Romanian strain. In addition, a comparative study of LSDV growth kinetic on MDBK and Vero cell line revealed that Vero cells were the best susceptible cells for the propagation of LSDV with best harvesting time 72hrs P.I. This is the first study to characterize the LSDV field isolates in Egypt based on two genes; the P32 and GPCR nucleotide sequences of LSDV that could be of a great importance in providing up to date analysis regarding the genotypic nature of circulating LSDV strains in different governorates of Egypt. Furthermore, multigene analysis and whole genome sequencing will greatly improve the accuracy of the molecular characterization and differentiation between Capri poxviruses in Egypt.

<u>Key words</u>: LSDV, virus isolation, MDBK, Vero, Growth kinetic, Real time PCR, Phylogenetic analysis, GPCR, P32, Egypt.

CONTENTS

Content	Page
List of Tables	VIII
List of Figures	IX
List of Abbreviations	XII
Chapter (1): Introduction	1
Chapter (2): Review of literature	5
2.1. History of LSD	5
2.1.1. History of LSD worldwide	5
2.1.2. History of LSD in Egypt	9
2.2. General properties of LSDV	10
2.2.1. Classification of LSDV	10
2.2.2. Morphology and physic-chemical properties of LSDV	11
2.2.3. LSDV Stability	12
2.2.4. Genomic organization of LSDV	14
2.2.5. Proteins of LSDV	18
2.2.6. Antigenic properties and relationships of LSDV	19
2.3. Replication cycle of LSDV	22
2.4. Epidemiology	25
2.4.1. Host susceptibility	25
2.4.2. LSDV source of infection	26
2.4.3. Transmission of LSDV	26
2.5. Pathogenesis of LSDV	28
2.6. Immunity to LSDV	29
2.7. Laboratory diagnosis	29
2.7.1. Sampling of LSDV	29
2.7.1.1. Samples preparation	30
2.7.2. Virus isolation	30
2.7.2.1. Isolation of LSDV on cell culture	30
2.7.2.2. Isolation of LSDV on Specific Pathogen Free embryonated	
chicken egg (SPF-ECEs)	32
2.7.3. Identification of LSDV by Transmission electron microscopy	
(TEM)	33
2.7.4. Antigenic identification of LSDV	34
2.7.4.1. Indirect fluorescent antibody technique (IFAT)	34
2.7.4.2. Serum/Virus neutralization test (NT)	35
2.7.5. Molecular identification of LSDV	36

2.7.5.1. Conventional PCR	37
2.7.5.2. Real-time PCR	39
2.7.6. Sequencing of LSDV	40
Chapter (3): Published papers	43
3.1.	43
3.2.	56
Chapter (4): Discussion	79
Chapter (5): Conclusion and recommendation	89
Chapter (6): English Summary	91
Chapter (7): References	94
Appendix	109
Arabic summary	
Arabic abstract	

LIST OF TABLES

1	Growth kinetic of LSDV in MDBK and Vero cell cultures. [log values obtained from TCID ₅₀ titration]	47
2	Sequence identity matrix for nucleotide sequence of GPCR gene of LSDV	65
3	Sequence identity matrix for nucleotide sequence of P32 gene of LSDV	65
4	Lists of samples collected from clinically infected animals suspecting LSD infection from Different governorates of Egypt and their PCR results	111
5	Sequence identity matrix for nucleotide sequence of GPCR gene of LSDV	117
6	Sequence identity matrix for nucleotide sequence of P32 gene of LSDV	118

LIST OF FIGURES

No.	Title	Page
1.	Negatively stained lumpy skin disease virus particles under TEM Magnification. 200,000 x.	12
2.	Diagram shows the surface structure of an non enveloped virion, whereas the other part shows a cross-section through the center of an enveloped virion	12
3.	Diagram shows the morphological structure of the intracellular mature virus (IMV) and the extracellular enveloped virus	12
4.	Schematic representation of the DNA of LSDV; Linear double stranded DNA with terminal hairpins and inverted repeats and the internal structure of the terminal repeats. The linear genome is shown at the top with the inverted terminal repeats (ITRs) shown as open boxes. The central part of the virus genome is highly conserved and contains genes needed for virus replication, whereas the terminal regions are more variable and encode genes that affect virus virulence and host range	17
5.	Linear map of the LSDV genome. ORFs are numbered from left to right based on the position of the methionine initiation codon. ORFs transcribed to the right are located above the horizontal line; ORFs transcribed to the left are below. Genes with similar functions and members of gene families are colored according to the figure key. ITRs are represented as black bars below the ORF map	17
6.	An overview of poxvirus multiplication including entry of EEV into host cell, membrane attachment and fusion of the IMV membrane with the host membrane, formation of viral factories, synthesis of crescent membranes are synthesized	24

List of figures

	enclosing viral DNA and proteins to form circular immature	
	virion (IV), formation of brick shaped IMV, formation of the	
	IEV by wrapping of IMV in Golgi membrane, finally IEV	
	released as EEV through exocytosis but CEV forms actin tails	
	aid in cell to cell transmission of the virus	
	Cytopathic effect of LSDV on continuous cell lines of African	
7	green monkey kidney Vero [Upper] and Madin derby bovine	48
/.	kidney MDBK [Lower] [magnification power x100, inverted	
	microscope, Olympus Co., Japan)	
ρ	Growth curves assay of LSDV on MDBK [Upper] and Vero	40
ð.	[Lower] cell lines	49
0	Comparative growth kinetic assay of LSDV on MDBK and	40
9.	Vero cell lines	49
	Agarose-gel electrophoresis of amplification products of	
10	554bp in size obtained from LSDV DNA using LSDV-specific	61
	primers of GPCR gene.	
	Cytopathic effect of LSDV on Madin derby bovine kidney	
	MDBK [magnification power x100, inverted microscope,	
	Olympus Co., Japan] A) Control non-infected MDBK cells	
11	B) and C) Infected MDBK cells 3 - 5 days post inoculation	()
11.	showing clusters, aggregations and cell rounding	02
	D) Infected MDBK cells 9 days post inoculation showing cell	
	detachment with vacuolation (100X magnification power).	
	Microscopic image under Olympus fluorescent microscope	
12.	camera A) was taken at 100x magnification power showing	
	specific fluorescence indicates presence of the virus. B) was	62
	taken at 400x magnification power showing specific intra-	
	cytoplasmic fluorescein in MDBK infected cells.	

List of figures

	The phylogenetic tree based on 519bp of G- protein-coupled	
12	chemokine receptor gene nucleotides sequences of Egyptian	66
15	LSDV field strains with other CaPVs published in GeneBank	00
	database.	
	The phylogenetic tree based on G- protein-coupled chemokine	
14	receptor gene nucleotides sequences of Egyptian LSDV field	67
	strains with other CaPVs published in GeneBank database.	
	The phylogenetic tree based on partial P32 gene nucleotides	
15.	sequences of Egyptian LSDV field strains with other CaPVs	68
	published in GeneBank database.	
	lesions of LSD on infected animals	
	A) Skin nodules on the scrotum and oedema in the leg.	
	B) and f) Skin nodules scattered on the hide.	
	C) Sloughing of the nodules on the lateral aspect of the body.	
	D) Suspected cattle for LSD showing skin lesions as skin	
16	nodules on the perineum accompanied with edematous leg.	109
	E) Suspected female cattle for LSD showing skin lesion as	
	skin nodules scattered on the neck and lateral aspect.	
	F) inracutaneous skin nodules on the neck and lateral aspect of	
	buffalo.	
	J) and H) Generalized intracutaneous skin nodules on the	
	perineum, tail, udder and leg of buffalo.	