

Tanta University Faculty of Agriculture Food Sci. &Technol. Dept.

New Applications of Gum Arabic in The Field of Nutrition and Food Technology.

By

Mohamed Mousa Abdou Salem

B.Sc. in Agric. Sciences, Fac. Agric., Tanta Univ., 2011.

M. Sc. in Agric. Sciences (Food Technology), Fac. Agric., Tanta Univ., 2016.

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Agric. Sciences

(Food Technology).

Food Science and Technology Department

Faculty of Agriculture

Tanta University

2020

ABSTRACT

In this study, chemical composition, antioxidant activity and antibacterial activity of Gum Arabic (GA) were studied, in addition to possibility of using GA as fat replacer at four levels 5, 10, 15 and 20% for production low-fat beef burger, as well as applying Gum Arabic was used in the coating solution at different concentrations (2.5, 5, 7.5 and 10%) for extending the shelf-life and maintains the physical, chemical and sensory properties of strawberry during cold storage at 4°c for 14 days. GA was added to basal diet at 10, 15 and 20% to study the effect of GA on diabetic and hepatic rats induced by alloxan and tetrachloride carbon, respectively. Most of enzymes, some indicators of liver and kidney function were determination, in addition to histopathologicl examination, to investigate the effect of GA on the kidney and liver functions of diabetic and hepatic rats, and comprised with diamicron and silymarine as a medical therapy. In relation to, chemical composition revealed that, total dietary fiber was the main component which represents about 89.89% of chemical composition. GA contained a high amount of phenolic compounds (1449.35 mg/100g), these compounds has effect antioxidant activity and antimicrobial activity, and the main ingredients were catchain, epicatchain, gallic acid, perogallol, vanilic acid and salysallic acid. Aqueous extract and ethanolic extract of GA appeared a high antioxidant activity which represents 73.30 and 70.87%, respectively, and high antibacterial activity against Gram positive and negative bacteria. The chemical composition of beef burger produced by replacing fat content with GA revealed that, protein and dietary fiber contents were increased with increasing replacement level, while fat content was decreased. The replacing fat content with GA improved the physical properties of low fat beef burger produced by increasing cooking yield and decreased cooking loss, shrinkage and diameter reduction. Cooking profile and sensory evaluation of low-fat beef burger showed that replacing level 5 and 10% gave values nearest to the control sample, also replacing levels 15 and 20% gave a fair product and not bad. So we can recommend using GA as fat replacer for production low-fat products for diabetic, obesity and hypercholestermic people. GA was used as edible coating decay percent; weight loss, TSS, TTA, firnemess, ascorbic acid and microbial load were improved with edible coating containing GA 5 and 7.50%. Also, sensory properties indicated that coating solutions were the same concentrations gave the best properties and indicated to extend the shelf-life and keeping the chemical and physical properties of strawberry during cold storage. In relation to diabetic and hepatic treatments, the results revealed that GA treatments (10, 15 and 20%) improved body weight, relative organs weight, serum glucose concentration of diabetic and hepatic rats. In addition GA treatments also improved lipid profile by decrease total T.C, LDL-c and T.G and increase HDL-c. Kidney functions (creatinine and uric acid) also liver functions (GPT, GOT and albumin) were returned to the normal levels after GA treatments which were raising by alloxan or C Cl₄ injection. Antioxidant enzyme (CAT, SOD and GSH) were increased, while MDA was decreased after GA treatments of diabetic and hepatic rats especially with 15 and 10% GA. Finally GA can used as fat replacer for low-fat products, and as edible coating for extend the shelf-life and keeping chemical and physical properties of fruits, as well as for diabetic and hepatic treatment to improve pancreas, kidney and liver functions.

Key words: Gum Arabic, fat replacer, edible coating, diabetes and hepatotoxicity.

LIST OF CONTENTS

Contents	Page
1- INTRODUCTION	1
2- AIM OF INVESTIGATION	6
3-REVIEW OF LITERATURE	7
3.1. Gum Arabic	7
3.1.1. Chemical composition of Gum Arabic	10
3.1.2. Antioxidant and antimicrobial activity of GA	11
3.2. Fat replacer	15
3.2.1. Beef burger	16
3.2.2. Effect of partial replacing fat content with GA on	17
chemical composition of beef burger	
3.2.2.1. Uncooked beef burger	17
3.2.2.2. Moisture content	17
3.2.2.3. Protein content	18
3.2.2.4. Fat content	18
3.2.2.5. Ash, fiber and carbohydrate contents	19
3.2.2.6. Cooked beef burger	20
3.2.2.7. Moisture content	20
3.2.2.8. Protein content	21
3.2.2.9. Fat content	22
3.2.2.10. Ash, fiber and carbohydrate contents	22
3.2.3. Effect of replacing fat content with GA on	23
physical properties	
3.2.3.1. Water Holding Capacity (WHC)	23
3.2.3.2. Plasticity	23
3.2.3.3. PH	24
3.2.3.4. Cooking yield and cooking loss	25
3.2.3.5. Texture	26
3.2.4. Effect of replacing fat content with GA on	27
sensory evaluation of cooked beef burger	
3.3. Edible coating	28
3.3.1. Strawberry	29
3.3.2. Effect of a novel edible coating based on GA on	30
some physical and chemical properties of	
strawberry during storage	
3.3.2.1. Physical quality	30
3.3.2.2. Chemical quality	33
3.4. Diabetes Mellitus	35
3.4.1. Alloxan	36
3.4.2. Diamicron	39

contents	page
3.4.3. Effect of GA treatment on rat suffered from	39
hyperglycima (diabetic)	
3.5. Hepatitis	43
3.5.1. Liver function tests	44
3.5.2. Complications of hepatitis	44
3.5.3. Carbon tetrachloride	45
3.5.4. Silymarin	45
3.5.5. Effect of GA treatment on rats suffered from	46
hepatotoxicity	
4- MATERIALS AND METHODS	50
4.1. Materials	50
4.1.1. Gum Arabic	50
4.1.2. Microorganisms	50
4.1.3. Beef meat and other ingredients	50
4.1.4. Strawberry	50
4.1.5. Animals	50
4.2. Methods	51
4.2.1. Gross chemical composition	51
4.2.2. Determination of minerals content	51
4.2.3. Preparation of aquatic and ethanolic extracts of	51
GA	
4.2.4.Quantification and identification of phenolic	52
compounds by using HPLC	50
4.2.5. Evaluation of Antioxidant activity of extracts	52
4.2.6. Determination of antibacterial activity of GA extracts	53
4.2.7. Preparation of beef burger	53
4.2.8. Physical properties and feder value	54
4.2.8.1. Water holding capacity (WHC) and plasticity	54
4.2.8.2. Texture indices	55
4.2.8.3. Feder value	55
4.2.8.4. Cooking characteristics	55
4.2.9.Texture profile analysis	55
4.2.9.1. Shrinkage	55
4.2.9.2. Diameter reduction	56
4.2.9.3. Cooking loss	56
4.2.9.4. Cooking yield	56
4.2.9.5. pH value	56
4.2.10. Organoleptic evaluation	56
4.2.11. Preparation of Gum Arabic as edible film	57
4.2.12. Preparation of strawberry for coating	57

contents	page
4.2.13. Measure of some physiochemical determination	58
4.2.13.1. Decay percentage	58
4.2.13.2. Weight loss percentage	58
4.2.13.3. Fruit firmness	58
4.2.13.4. Determination of titratable acidity (TA)	59
4.2.13.5 Determination of ascorbic acid content	59
4.2.13.6. Total soluble solids (TSS)	59
4.2.14. Microbiological analysis	59
4.2.14.1. Sample preparation	59
4.2.14.2. Total viable bacterial counts	59
4.2.14.3. Mold and Yeats counts	60
4.2.15. Sensory evaluation	60
4.2.16. Biological investigation	60
4.2.16.1. Experimental animals	60
4.2.16.2. Diets	61
4.2.16.3. Preparation of diabetic rats	62
4.2.16.4. Preparation of hepatic rats	62
4.2.16.5. Experimental design for diabetic and hepatic	63
rats	
4.2.16.6. Blood sampling	64
4.2.16.7. Collection of organs	64
4.2.16.8. Determination of blood glucose	64
4.2.16.9. Determination of serum lipids	64
4.2.16.9.1. Triglycerides	64
4.2.16.9.2. Total cholesterol	65
4.2.16.9.3. HDL-cholestrol	65
4.2.16.9.4. V-LDL and LDL-cholestrol	65
4.2.16.10. Determination of kidney functions	65
4.2.16.10.1. Determination of creatinine	65
4.2.16.10.2. Determination of urea	65
42.16.10.3.Determination of Uric acid	65
4.2.16.11. Determination of liver functions	66
4.2.16.11.1. Determination of alanine transferase	66
(GPT)	
4.2.16.11.2. Determination of aspartatetransferase (GOT)	66
4.2.16.11.3. Determination of total protein	66
4.2.16.11.4. Determination of albumin	66
4.2.16.11.5. Determination of Alkaline phosphatase (ALK.p)	66

contents	page
4.2.16.12. Assessment of lipid peroxidation	66
4.2.16.12.1. Determination of Malondialdehyde (MDA)	66
4.2.16.13. Evaluation of antioxidant enzyme activity	66
4.2.16.13.1. Determination of Glutathione (GSH)	66
4.2.16.13.2. Determination of Catalase (CAT)	67
42.16.13.3. Determination of Superoxide dismutase (SOD)	67
4.2.16.14. Histopathological examination	67
42.16.15. Statistical analysis	67
5- RESULTS AND DISCUSSION	68
5.1. Part 1 chemical composition, antioxidant and antimicrobial activity of Gum Arabic	68
5.1.1. Chemical composition of Gum Arabic	68
5.1.2. Minerals composition of Gum Arabic	69
5.1.3. Quantification and identification of phenolic compounds of GA by using HPLC	70
5.1.4. Antioxidant activity of GA extracts	72
5.1.5. Antibacterial activity of GA extracts	72
5.2. Part 2 Gum Arabic as fat replacer	75
5.2.1. Production low-fat beef burger by using Gum Arabic as fat replacer	75
5.2.2. Chemical composition of beef burger	75
5.2.3. Physical properties and feder value of beef burger	77
5.2.3.1. Cooking properties and pH value of beef burger	79
5.2.4. Texture profile analysis of beef burger	81
5.2.5. Sensory evaluation of beef burger	83
5.3. Part 3 Gum Arabic as edible coating	86
5.3.1. Effect of GA on quality properties and shelf-life of strawberry during cold storage	86
5.3.1.1. Decay percent	86
5.3.1.2. Weight loss	87
5.3.1.3. Total titratable acidity (TTA)	90
5.3.1.4. Total soluble solid (TSS)	92
5.3.1.5. Firmness	94
5.3.1.6. Ascorbic acid	96
5.3.1.7. Total bacterial count	98
5.3.1.8. Molds and yeast count	99

contents	page
5.3.1.9. Sensory evaluation	100
5.4. Part 4 Biological evaluation of Gum Arabic	104
5.4.1. Gum Arabic for treatment of diabetic rats	104
5.4.1.1. Effect of feeding diabetic rats on different	104
levels of GA	
5.4.1.1.1. Effect on body weight and body weight gain	104
5.4.1.1.2. Effect on blood glucose levels	106
5.4.1.1.3. Effect on the organs and relative organs weight	109
5.4.1.1.4. Effect on total serum lipid profile of diabetic rats	112
5.4.1.1.5. Effect on liver functions	117
5.4.1.1.5.1. Effect on serum transminase and alkaline	117
phosphatase	117
5.4.1.1.5.2. Effect on serum albumin and total protein	120
5.4.1.1.6. Effect on kidney functions	121
5.4.1.1.7. Effect on antioxidant enzymes and lipid	122
peroxidation	
5.4.1.1.8. Histopathological examination of diabetic	126
rats	100
5.4.1.1.8.1. Histopathological examination of pancreas	126
5.4.1.1.8.2. Histological examination of liver	129
5.4.1.1.8.3. Histological examination of kidney	132
5.4.1.1.8.4. Histological examination of heart	136
5.4.2. Gum Arabic for treatment of hepatic rats	139
5.4.2.1. Effect of feeding hepatic rats on diets containing different levels of GA	139
5.4.2.1.1. Effect on body weight% change of body	139
weight and serum glucose concentration	107
5.4.2.1.2. Effect on some organs weights	142
5.4.2.1.3. Effect on total serum lipid profile	146
5.4.2.1.3.1. Effect on serum cholesterol and it is	146
derivative	
5.4.2.1.3.2. Effect on serum triglycerides	150
5.4.2.1.4. Effect on liver function	151
5.4.2.1.4.1. Effect on serum albumin and total protein	152
5.4.2.1.4.2. Effect on antioxidant enzymes	153
5.4.2.1.4.3. Effect on lipid peroxidation	155
5.4.2.1.5. Effect on kidney function	156
5.4.2.1.6. Histopathological examination of hepatic rats	157

contents	page
5.4.2.1.6.1. Histopathological examination of liver	157
5.4.2.1.6.2. Histopathological examination of kidney	159
5.4.2.1.6.3. Histopathological examination of heart	162
5.4.2.1.6.4. Histopathological examination of pancreas	164
6- SUMMARY	167
7- REFERENCES	177
ARABIC SUMMARY	-