

Faculty of Agriculture Soils and Water Department

A study on organic amendments effect on sandy soil properties and plant growth

By Mahmud Abd El-Moniem Mohamed Saad EL-Shony B.Sc. Agric. (Soil Sci.), Cairo University, 2001

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master

in Agricultural Science (Soils)

Department of Soils and Water Faculty of Agriculture

Benha University

2020

CONTENTS

N	D: Subject	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1. Organic amendments and their implications on soil physical and	3
	chemical characteristics	
	2.1.1 Soil bulk density and porosity as affected by the soil	4
	application of organic amendments	
	2.1.1.1 Effect of compost on soil bulk density and porosity	4
	2.1.1.2 Effect of biochar on soil bulk density and porosity	5
	2.1.2. Water holding capacity as affected by the soil application of	7
	organic amendments	
	2.1.2.1. Effect of compost on water holding capacity	8
	2.1.2.2 Effect of biochar on water holding capacity and field	8
	capacity	
	2.1.3. Cation exchange capacity (CEC) as affected by the soil	10
	application of organic amendments	
	2.1.3.1. Effect of compost on cation exchange capacity	11
	(CEC)	
	2.1.3.2. Effect of biochar on cation exchange capacity	11
	(C.E.C)	
	2.1.4. Soil pH as affected by the soil application of organic	12
	amendments	
	2.1.5. Soil organic carbon (SOC) as affected by the soil	13
	application of organic amendments	
	2.1.5.1. Effect of biochar on soil organic matter and soil	13
	organic carbon (SOC	
	2.1.5.2. Effect of biochar on soil organic matter and soil	14
	organic carbon (SOC)	
	2.2. Nutrient availability and status in plants as affected by the soil	15
	application of organic amendments	
	2.2.1. Effect of compost on nutrients availability	15
	2.2.2. Effect of biochar on the availability of soil nutrients	17

NO:	Subject	Page
	2.2.3. Effect of compost on plant nutrients concentration	18
	2.2.4. Effect of biochar on plant nutrients content and uptake	20
	2.2.5. Effect of compost on yield	21
	2.2.6. Effect of biochar addition on crop yield	23
2.3	. The combination between compost and biochar and the	24
	experimental hypotheses	
3. Ma	aterials and Methods	27
3.1	Materials of study	27
3.2	. The experimental design and the field study.	30
	3.2.1The peanut experimental work (summer season)	31
	3.2.2 The wheat experimental work (winter season)	31
3.3	. Methods of analyses	32
	3.3.1Soil analysis	32
	3.3.2Plant analysis	33
3.4	Data analysis	33
4. Results a	4. Results and Discussion	
4.1	. Results	35
	4.1.1. Effect of the organic amendments on the outcome yield	35
	4.1.1.1 Peanut yield	35
	4.1.1.2. Wheat yield	38
	4.1.2. Effect of organic amendments on soil physical	41
	characteristics	
	4.1.2.1. Effect of organic amendments on soil water	41
	retention and available soil-moisture contents	
	4.1.2.2. Effect of the organic amendments on soil bulk	44
	density and soil hydraulic conductivity	
	4.1.3. Effect of the organic amendments on soil chemical	47
	characteristic	
	4.1.3.1. Soil pH and EC	47
	4.1.3.2. Residual organic C (ROC) and soil CEC	50
	4.1.4. Effect of organic amendments on the availability of soil	53

	NO:	Subject	Page
		nutrients and their concentrations within the different	
		plant parts	
		4.1.4.1. Available-NPK in soil and their concentrations	53
		within the different plant parts.	
		4.1.4.2. Available-Fe, Mn and Zn in soil and their	59
		concentrations within the different plant parts.	
	4.1.5.	The economic returns of using the investigated organic	65
		amendments in crop production	
	4.2. Discussi	on	67
	4.2.1.	The first assumption	68
	4.2.2.	The second assumption	70
	4.2.3.	The consequences of the organic amendments on peanut	74
		and wheat productivity	
5.	Conclusion	ı	75
6.	Summery		76
7.	References	S	78
	Arabic Sur	nmery	103

List of Tables

No.	Table	Page
1	Physical and chemical characteristics of the studied soil	28
2	Physical and chemical properties of the applied compost	29
	and biochar amendments	
3	Peanut growth parameters and yield components (means	36
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations	
4	Wheat growth parameters and yield components (means	39
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations	
5	Soil moisture contents (means \pm SD) as affected by	42
	amending soil with compost and biochar solely or in	
	combinations	
6	Soil hydraulic conductivity and soil bulk density (means	45
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations	
7	Soil pH and EC (means \pm SD) as affected by amending	48
	soil with compost and biochar solely or in	
	combinations.	
8	Soil CEC and the residual organic C (ROC) (means	51
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations	
9A	Extractable NPK in soil and their concentrations within	54
	the different plant parts (peanut yield) (means \pm SD) as	
	affected by application of compost and biochar either	
	solely or in combinations.	

No.	Table	Page
9B	Extractable NPK in soil and their concentrations within the	55
	different plant parts (wheat yield) (means \pm SD) as affected	l
	by application of compost and biochar either solely or in	L
	combinations.	
10 A	AB-DTPA extractable Fe, Mn and Zn in soil and their	60
	concentrations within the different plant parts (peanut	
	yield) (means \pm SD) as affected by application of composition	C
	and biochar either solely or in combinations	
10 P	AB-DTPA extractable Fe, Mn and Zn in soil and their	61
10.9	concentrations within the different plant parts (wheat	01
	yield) (means \pm SD) as affected by application of composition	ī
	and biochar either solely or in combinations	

List of Figures

No.	Figure	Page
1	Peanut growth parameters and yield components (means	37
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations. See footnote Table 3	
2	Wheat growth parameters and yield components (means	40
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations (see footnote Table	
	3). Different letters indicate significant differences	
	between treatments ($P < 0.05$).	
3	Soil moisture contents (means \pm SD) as affected by	43
	amending soil with compost and biochar solely or in	
	combinations (see footnote Table 3). Different letters	
	indicate significant differences between treatments	
	(<i>P</i> <0.05).	
4	Soil hydraulic conductivity and soil bulk density (means	46
	\pm SD) as affected by amending soil with compost and	
	biochar solely or in combinations (see footnote Table	
	3). Different letters indicate significant differences	
	between treatments ($P < 0.05$)	
5	Soil pH and EC (means \pm SD) as affected by amending	49
	soil with compost and biochar solely or in combinations	
	(see footnote Table 3). Different letters indicate	
	significant differences between treatments ($P < 0.05$).	
6	Soil CEC and the residual organic carbon (means \pm SD)	52
	as affected by amending soil with compost and biochar	
	solely or in combinations (see footnote Table 3).	

vi

No.	Figure	Page
	Different letters indicate significant differences between	
	treatments (P<0.05)	
7	Available-N (extracted by K_2SO_4) in the investigated	56
	soil and its concentrations within the different plant	
	parts as affected by application of compost and biochar	
	either solely or in combinations.	
8	Available-P (Olsen extracted P) in soil and its	57
	concentrations within the different plant parts as	
	affected by application of compost and biochar either	
	solely or in combinations.	
9	Available-K in soil (extracted by ammonium acetate)	58
	and its concentrations within the different plant parts as	
	affected by application of compost and biochar either	
	solely or in combinations.	
10	AB-DTPA extractable Fe in soil and its concentrations	62
	within the different plant parts as affected by	
	application of compost and biochar either solely or in	
	combinations.	
11	AB-DTPA extractable Mn in soil and its concentrations	63
	within the different plant parts as affected by	
	application of compost and biochar either solely or in	
	combinations.	
12	AB-DTPA extractable Zn in soil and its concentrations	64
	within the different plant parts as affected by	
	application of compost and biochar either solely or in	
	combinations.	
13	The average net profit of the used organic amendments	66

vii

No.	Figure	Page
	in US dollar (1 US dollar= 17 L.E). (see footnote Table	
	3). Different letters indicate significant differences	
	between treatments ($P < 0.05$).	

6- Summery

Poor fertility and low water retention at the different soil moisture constants are both limiting factors of crop productivity in sandy soils. Recycling organic wastes might provide such soils with nutritive elements and, at the same time, improves their chemical and physical characteristics. Thus, two organic amendments (biochar and compost) were selected in the current study to investigate their effectiveness as amendments of a sandy soil while considering the following two assumptions: (H1) efficiency of a half dose of biochar or less is comparable to the effect of the full dose of compost for improving soil physical and chemical characteristics. Furthermore, the residual effects of biochar (vs compost) on soil properties seemed to be more noticeable in the successive growing season. (H2) Biochar can negatively affect the bio-availability and concentrations of P and soil micronutrients within the areal parts of plants due to its alkaline nature on one hand, and its relatively high persistence in soil, on the other one. Accordingly, a sandy soil (of low buffering capacity) was amended with either biochar (BS at elevated rates) and/or compost (CT), solely or in combination and then planted with peanut. The residual effect of these amendments was investigated in the successive season on wheat. Results revealed that the effect of applying 12.5 Mg Bs ha⁻¹ was almost similar to that of 77

applying 25 Mg CT ha⁻¹ during the two seasons of study. On the other hand, the application of only 5 Mg Bs ha⁻¹ could improve slightly; but insignificantly some soil characteristics. The combination between "Bs+CT" recorded further significant improvements in the abovementioned characteristics especially at the higher doses of application. Thus, we partially accept the first assumption. To investigate the second one, the availability of N, P, K, Fe, Zn and Mn nutrients was considered in the investigated soil by the end of each growing season in addition to the concentrations of these nutrients within the areal parts of the grown plants. Results obtained herein indicate that biochar underwent considerable decomposition in sandy soils shifting the pH slightly towards alkalinity. . On the other hand, both the biochar and compost could improve significantly the availability of soil macro-and micro- nutrients and hence increased their uptake by the grown plants. These finding does not, therefore, support the second hypothesis. In conclusion, biochar is recommended as a slow release fertilizer for macro- and micronutrients when applied at only a half dose of compost and its effect on soil physical and chemical characteristics may extend for more than one year after application.