STUDY THE EFFECT OF GROUNDWATER ON PRODUCTIVE AND IMMUNOLOGICAL PERFORMANCE FOR BROILER CHICKEN

By

SHIMAA MOHAMED SHAKER IBRAHIM

B.Sc. Agric. Sc. (Poul. Prod.), Fac. Agric., Ain Shams University, 1999Diploma in Env. Agric. Sc., Dept. of Agric. Sc., Inst. of Env. Studies and Res., Ain Shams Univ., 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

STUDY THE EFFECT OF GROUNDWATER ON PRODUCTIVE AND IMMUNOLOGICAL PERFORMANCE FOR BROILER CHICKEN

By

SHIMAA MOHAMED SHAKER IBRAHIM

B.Sc. Agric. Sc. (Poultry Production), Fac. Agric., Ain Shams University, 1999Diploma in Env. Agric. Sc., Dept. of Agric. Sc., Inst. of Env. Studies andRes., Ain Shams Univ., 2004

This thesis for MSc. D. degree has been approved by:

Date of Examination: 8 / 7 /2020

Prof. of Poultry Breeding, Faculty of Agriculture, Alexandria University. Dr. Ahmed Galal El-Sayed Gad Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University. Dr. Salah El-Din Abd El-Rahman El-Safty Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University. Dr. Usama Mohamed Ali Shoureap Prof. Emeritus of Poultry Breeding, Faculty of Agriculture, Ain Shams University.

STUDY THE EFFECT OF GROUNDWATER ON PRODUCTIVE AND IMMUNOLOGICAL PERFORMANCE FOR BROILER CHICKEN

By

SHIMAA MOHAMED SHAKER IBRAHIM

B.Sc. Agric. Sc. (Poul. Prod.), Fac. Agric., Ain Shams University, 1999Diploma in Env. Agric. Sc., Dept. of Agric. Sc., Inst. of Env. Studies and Res., Ain Shams Univ., 2004

Under the supervision of:

Dr. Usama Mohamed Ali Shorueap

Prof. Emeritus of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Salah El-Din Abd El-Rahman El- Safty

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Dr. Zeninab Khalil EI-Awamry

Research Prof. Emeritus of Nutrition and Food Contamination, the Regional Center for Food & Feed (RCFF), Agriculture Research Center.

ABSTRACT

Shimaa Mohamed Shaker Ibrahim: Study the Effect of Groundwater on the Productive and Immunological Performance for Broiler Chicken. Unpublished Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2020.

The basic aim was an attempt to evaluate the effects of groundwater source on some productive performance traits of broiler chickens. 120 chick Hubbard were used in the trial with four different sources of groundwater belonging to the Qalyubia governorate {Ahmed Saeed (A. Saeed), Shalakan, El-Wqaf, and Bahadah regions}. We have kept a distance of not less than 10 km between sources.

Chick's 3-day-old of broiler were used in this experiment and divided into four groups according to the studied regions, the trial lasted until the age of 4 weeks, and the chemical analysis of the drinking water during the trial was conducted. Carcass dissection and giblets extraction were also undertaken. The weight of birds was taken each week when receiving at the farm and growth rate was determined on a weekly basis. The main results obtained could be summarized as follow:

- the Bahadah group recorded the heaviest bodyweight (1920gm) compared to the other groups, while there were no significant differences between the regions of A. Saeed and El-Wqaf, where they were recorded (1770 and 1690 gm, respectively) at 4 weeks of age.
- There were no significant differences between groups that consumed water in the four different regions of the experiment with regard to food consumed and the food conversion factor.
- It was noticed that there were significant differences between the four areas that used groundwater in relation to the weight of the carcass, The Bahadah region was successful in the weight of the carcass, with a noticeable difference. The weight of the carcass was

- recorded (1457.7 g), (71.7%) from percent of body weight compared to the other regions (Shalakan, A. Saeed, El-Wqaf) following was recorded (1332.4, 1271.8, 1265.3 g) with a percentage of (71.5, 70.9, 70.8%).
- The significant differences were realized among areas. However, the Bahadah group recorded the highest figure of body weight trait, while the El-Wqaf group recorded the lowest figure, both Shalakan and A.Saeed groups recorded the intermediate values.
- The percentage of total dissolved salts in the water of Bahadah region was lower than the rest of the other regions, and it was recorded (391 g / L), which resulted in a decrease in the number of bacteria in the water in the areas.
- It was noticed that there was no high pollution for the lead and cadmium elements for the water used in the experiment, but that the highest record was recorded in Ahmed Saeed area followed by El-Wqaf area, which resulted in the absence of pollution in the carcass using the groundwater of the four areas.
- That the CMI (Cell-mediated immunity) response was found significantly higher, showed that the group of pro-biotic (50mg) at 24 h post-PHA-P (Phytohaemagglutinin-P) injection as compared to other groups. However, there was no significant difference among groups at 48h. But showed at 72h post-PHA-P injection.
- There is a significant difference between the four places in relation to the immune performance of the chicken.
- It was noted that the chicken outperformed the El-Wqaf region and the immune cells retained compared to the rest of the regions.
- It was also noticed that the A. Saeed area was the least important while maintaining the two areas with Shalakan and Bahadah cellular immunity.

Finally, it is important to note that providing flocks with a clean and wholesome water supply can make a difference in performance traits.

CONTENTS

		Page
	LIST OF TABLES	IV
	LIST OF FIGURES	VI
	LIST OF ABBREVIATIONS	VII
L	INTRODUCTION	1
Ll	REVIEW OF LITERATURES	3
1.	Overview of groundwater	3
1.1.	Water parameters	3
1.1.1.	pH (Hydrogen number)	3
1.1.2.	Physical and Chemical parameters	4
1.1.3.	Bacterial contamination	5
1.2.	Groundwater parameters	6
1.2.1.	Physical characteristics in groundwater	6
1.2.2.	pH, TDS levels and the temperature	6
1.2.3.	Chemical analysis in groundwater	7
1.2.4.	Bacterial contamination in groundwater	8
2.	Overview of heavy metals in groundwater	8
2.1.	Lead (Pb)	12
2.2.	Cadmium (Cd)	13
2.3.	Effect of Lead (Pb) and Cadmium (Cd)	
	supplementation on chicken	14
2.3.1.	Mortality rate	14
2.3.2.	Body weight and growth rate	14
2.3.3.	Carcass characteristics	16
3.	Phenotypic parameters	18
3.1.	Body weight and growth rate	18
3.2.	Feed consumption and feed conversion ratio	19
3.2.1.	Feed intake	19
3.2.2.	Feed efficiency	20
4.	Cell-mediated immunity (CMI)	21

4.1.	Immunocompetence measurements	22
4.2.	Relative lymphoid organs	23
4.3.	Blastogenic response to Phytohemagglutinin-P (PHA-P)	25
5.	Carcass measurements	27
111	MATERIALS AND METHODS	28
1.	Flock management and design	28
1.1.	Groundwater measurement	28
1.2.	Measurement of Physical characteristics of groundwater	29
1.2.1.	Temperature measurement	29
1.2.2.	pH measurement	29
1.2.3.	Salinity	29
1.2.4.	Bacterial contamination measurement	30
2.	Studies traits	31
2.1.	Body weight and body weight gain	31
2.2.	Feed consumption and feed conversion ratio	31
2.3.	Mortality rate	31
2.4.	Carcass dissection	33
2.5	Methods of heavy metals determination	33
2.6.	Immunological parameters	34
2.6.1.	Weight and percentages of Lymphoid Organs	34
2.6.2.	Adaptive-Immunity-Related-Features (AIRF)	34
2.6.3.	Cell-Mediated Immunity in Poultry	35
2.6.3.1.	Introduction about (Phytohemagglutinin-P; PHA-P)	35
	Statistical analysis	35
lV	RESULTS AND DISCUSSION	36
1.	Overview of groundwater	36
1.1.	Parameters of groundwater	36
1.1.1.	pH (Hydrogen number)	36
1.1.2.	Various parameters of groundwater	37
1.1.3.	Bacterial contamination	41
1.2.	Heavy metals analysis in groundwater	43
2.	Productive characters	45

2.1.	Mortality rate	45
2.2.	Body weight	46
2.3	Feed consumption	49
3.	Carcass measurements	50
3.1.	Live body weight	50
3.2.	Carcass weight and percentage	50
3.3.	Head weight and percentage	50
3.4.	Leg weight and percentage	51
3.5.	Spleen weight and percentage	51
3.6.	Liver weight and percentage	53
3.7.	Gizzard weight and percentage	53
3.8.	Heart weight and percentage	53
3.9.	Edible meat parts	55
3.9.1.	Major muscle weight and percentage	55
3.9.2.	Minor muscle weight and percentage	55
3.9.3.	Thigh weight and percentage	55
3.9.4.	Drumstick weight and percentage	56
3.10.	Heavy metal accumulations concentrations of carcass	58
4.	Immunological performance	61
4.1.	Cell-mediated immunity (CMI)	61
4.2.	The effect of immune stress on growth performance	64
V	SUMMARY AND CONCLUSION	65
Vl	REFERENCES	69
	ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1.	Salinity ranges from fresh to hyper-saline.	30
2.	Composition and calculated analysis of the basal	
	experimental starter and grower diets.	32
3.	Concentration of test chemicals in groundwater during	
	the first and end experiment.	36
4.	Some physical characteristics of the groundwater in	
	the different groundwater sites.	42
5.	Means ± SE of body weight (g) at different ages as	
	affected by different groundwater sites.	47
6.	Means ± SE of live body and inedible meat parts	
	(weight and percent) as affected by groundwater sites.	52
7.	Means ± SE of edible meat parts (weight and percent)	
	as affected by groundwater sites.	54
8.	Major pectorals muscle, Minor pectorals muscle,	
	Thigh and Drumstick muscles weights (Mean \pm SE) as	
	affected by groundwater sites.	56
9.	Residue levels of lead contents in Liver, Kidney,	
	Major pectorals muscles and Drumstick in different	
	sites.	60
10.	Residue levels of Cadmium contents in Liver, Kidney,	
	MJP and DR in different sites.	60

LIST OF FIGURES

Fig. No.		Page
1.	Comparison between TDS and TS in the groundwater in	
	the different sites.	38
2.	Comparison between concentration of TDS and TS in	
	groundwater during the first period in the different sites.	40
3.	Comparison between concentration of TDS and TS in	
	groundwater during the end period in the different sites.	40
4.	Concentration of lead and cadmium in groundwater	
	(First experiment).	44
5.	Concentration of lead and cadmium in groundwater	
	(End experiment).	44
6.	Means ± SE of body weight (g) at different ages as	
	affected by different groundwater sites.	47
7, 8.	The effect of water sources from the four places on the	
	immune performance of chickens.	62