

Faculty of Veterinary Medicine Department of Food Hygiene

BIOHAZARDS IN SKIMMED DAIRY PRODUCTS

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

In

Veterinary Science (Milk Hygiene)

Presented by

Zeinab Ahmed Mohamed Sayed-Ahmed

(B. V. Sc., Faculty of Veterinary Medicine, Alexandria University, 2011) (M. V. Sc., Faculty of Veterinary Medicine, Alexandria University, 2016)

2020

List of Contents

	Title	Page
1.0	INTRODUCTION	1
2.0	REVIEW OF LITERATURE	5
2.1	Salmonella	5
2.2	Escherichia coli (E. coli)	8
2.3	Staphylococcus aureus (S. aureus)	10
2.4	Listeria monocytogenes (L. monocytogenes)	15
2.5	Bacillus cereus (B. cereus)	18
2.6	Clostridium perfringens (C. perfringens)	20
2.7	Propolis "Bee glue"	22
3.0	MATERIALS AND METHODS	27
3.1	Sampling	27
3.2	Preparation of samples and initial suspension	27
3.3	Isolation and identification of Salmonella	28
3.4	Isolation and identification of Escherichia coli	33
3.5	Isolation and identification of coagulase-positive staphylococci	35
3.6	Isolation and identification of Listeria monocytogenes	37
3.7	Isolation and identification of <i>Bacillus cereus</i>	41
3.8	Isolation and identification of <i>Clostridium perfringens</i>	43
3.9	Confirmation of the isolated strains from examined skimmed dairy products by advanced techniques	43
3.10	Detection of virulence genes in the isolated strains from examined samples using PCR	48
3.11	Sequencing	50
3.12	Antimicrobial Susceptibility Testing	51
3.13	Determination of multiple antibiotic resistance (MAR) index	51
3.14	Detection of antimicrobial activity of Ethanolic Extracted honeybee propolis	52
4.0	RESULTS	53
5.0	DISCUSSION	103
6.0	CONCLUSIONS AND RECOMMENDATIONS	117
7.0	ENGLISH SUMMARY	118
8.0	REFERENCES	120
	ARABIC SUMMARY	

List of Tables

Table No.	Table Title	Page
1	Prevalence of Salmonella in examined skimmed dairy products samples (based on molecular identification) in comparison with the Egyptian Standards	53
2	Identification of Salmonella isolated from examined skimmed dairy products samples by different identification methods	54
3	Sensitivity, specificity, and agreement of isolation and identification of Salmonella with confirmatory PCR technique in examined skimmed dairy products samples	55
4	Prevalence of <i>Escherichia coli</i> in examined skimmed dairy products samples (based on molecular identification) in comparison with the Egyptian Standards	56
5	Identification of <i>Escherichia coli</i> in examined skimmed dairy products samples using different cultural agar media in comparison with indole test	57
6	Identification of selected <i>Escherichia coli</i> (8 strains) isolated from examined skimmed dairy products samples by different identification methods	58
7	Detection of <i>Escherichia coli</i> determinant gene (<i>phoA</i>) and virulence genes (<i>stx1, stx2, eaeA</i>) in selected presumptive <i>Escherichia coli</i> (8 strains) isolated from examined skimmed dairy products samples by PCR technique	59
8	Sensitivity, specificity, and agreement of isolation and identification of <i>Escherichia coli</i> with confirmatory PCR technique in examined skimmed dairy products samples	62
9	Prevalence of coagulase-positive <i>Staphylococcus aureus</i> in examined skimmed dairy products samples (based on molecular identification) in comparison with the Egyptian Standards	64
10	Identification of coagulase-positive staphylococci in examined skimmed dairy products samples using different cultural agar media in comparison with coagulase test	65
11	Identification of coagulase-positive <i>Staphylococcus aureus</i> isolated from examined skimmed dairy products samples by different identification methods	66
12	Detection of <i>Staphylococcus aureus</i> determinant gene (23S rRNA) and enterotoxigenic genes (<i>seb</i> , <i>sed</i>) in presumptive coagulase-positive <i>Staphylococcus aureus</i> isolated from examined skimmed dairy products samples by PCR technique	67
13	Sensitivity, specificity, and agreement of isolation and identification of <i>Staphylococcus aureus</i> with confirmatory PCR technique in examined skimmed dairy products samples	70
14	Sensitivity, specificity, and agreement of isolation and identification of <i>Staphylococcus aureus</i> with confirmatory PCR technique in examined skimmed dairy products samples	70

15	Prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) in examined skimmed dairy products samples with different identification methods	71
16	Antimicrobial susceptibility tests of MRSA strains isolated from different skimmed dairy products	74
17	Antimicrobial resistance profile and multiple antibiotics resistance (MAR) index of MRSA strains isolated from examined skimmed dairy products samples	75
18	Prevalence of <i>Listeria monocytogenes</i> in examined skimmed dairy products samples (based on molecular identification) in comparison with the Egyptian Standards	76
19	Identification of <i>Listeria monocytogenes</i> isolated from examined skimmed dairy products samples by different identification methods	77
20	Sensitivity, specificity, and agreement of isolation and identification of <i>Listeria monocytogenes</i> with confirmatory PCR technique in examined skimmed dairy products samples	78
21	Prevalence of <i>Bacillus cereus</i> in examined skimmed dairy products samples (based on molecular identification) in comparison with the Egyptian Standards	80
22	Identification of <i>Bacillus cereus</i> isolated from examined skimmed dairy product samples by different identification methods	81
23	Detection of <i>Bacillus cereus</i> determinant gene (<i>groEL</i>) and virulence genes (<i>hbl, cytK, ces</i>) in presumptive <i>Bacillus cereus</i> isolated from examined skimmed dairy products samples by PCR technique	82
24	Sensitivity, specificity, and agreement of isolation and identification of <i>Bacillus cereus</i> with confirmatory PCR technique in examined skimmed dairy products samples	85
25	Prevalence of <i>Clostridium perfringens</i> in examined skimmed dairy products samples (based on conventional identification) in comparison with the Egyptian Standards	86
26	Identification of <i>Clostridium perfringens</i> in examined skimmed dairy products samples using different culturing techniques	87
27	Sensitivity, specificity, and agreement of isolation and identification of <i>Clostridium perfringens</i> with SC agar culturing in examined skimmed dairy products samples	88
28	Sensitivity, specificity, and agreement of isolation and identification of <i>Clostridium perfringens</i> with SC agar culturing in examined skimmed dairy products samples	88
29	Prevalence of foodborne pathogens in examined Kareish cheese samples	90
30	Prevalence of foodborne pathogens in examined pasteurized skimmed milk cheese	91
31	Prevalence of foodborne pathogens in examined light yogurt samples	92
32	Prevalence of foodborne pathogens in examined skimmed milk powder	93
33	The accession numbers of sequenced genes in the GenBank	94

List of Figures

Figure	Figure Title	nage
No.		page
1	Pulsed-field gel electrophoresis (PFGE) of PCR of <i>E. coli phoA</i> gene	60
2	Pulsed-field gel electrophoresis (PFGE) of PCR of <i>E. coli</i> virulence genes	61
	Prevalence of Gram-negative foodborne pathogens (Salmonella, E. coli) in	
3	examined skimmed dairy products samples (based on molecular	63
	identification)	
4	Pulsed-field gel electrophoresis (PFGE) of PCR of S. aureus 23S rRNA gene	68
5	Pulsed-field gel electrophoresis (PFGE) of Multiplex PCR of S. aureus	60
	enterotoxigenic genes	09
6	Pulsed-field gel electrophoresis (PFGE) of PCR of S. aureus mecA gene	72
	Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in	
7	examined skimmed dairy products samples (based on molecular	73
	identification)	
	Prevalence of Gram-positive foodborne pathogens (S. aureus, L.	
8	monocytogenes) in examined skimmed dairy products samples (based on	79
	molecular identification)	
0	Pulsed-field gel electrophoresis (PFGE) of PCR of Salmonella, L.	02
9	monocytogenes, B. cereus	83
10	Pulsed-field gel electrophoresis (PFGE) of PCR of <i>B. cereus</i> virulence	04
10	genes	84
11	Prevalence of spore-forming foodborne pathogens	89
12	Prevalence of foodborne pathogens in examined Kareish cheese samples	90
12	Prevalence of foodborne pathogens in examined pasteurized skimmed	01
13	milk cheese	91
14	Prevalence of foodborne pathogens in examined light yogurt samples	92
15	Prevalence of foodborne pathogens in examined skimmed milk powder	93
16	The accession number of <i>Escherichia coli phoA</i> gene	95
17	The accession number of <i>Staphylococcus aureus 23S rRNA</i> gene	96
18	The accession number of <i>Bacillus cereus groEL</i> gene	97
10	Phylogenetic tree for <i>phoA</i> gene based on the DNA nucleotide sequence	
19	compared with the other <i>phoA</i> genes of <i>Escherichia coli</i> listed on GenBank	98
	Phylogenetic tree for 23S rRNA gene based on the DNA nucleotide	
20	sequence compared with the other 23S rRNA genes of Staphylococcus	99
	aureus listed on GenBank	
21	Phylogenetic tree for 23S rRNA gene based on the DNA nucleotide	100
	sequence	100
22	Phylogenetic tree for <i>groEL</i> gene based on the DNA nucleotide	101
22	Antimiarabial activity of Ethanolia Extracted Dronalia (FED)	102
23	Anumicrobial activity of Ethanolic Extracted Propolis (EEP)	102

7. SUMMARY

Two hundred and ten samples of street-vendor Kareish cheese, supermarket Kareish cheese, light Feta cheese, light processed cheese, light plain yogurt, packed and unpacked skimmed milk powder (30 of each) collected from supermarkets, hypermarkets, groceries, small dairies and street vendors in Alexandria City, Egypt. The samples obtained as sold to the public and transferred with a minimum delay to the laboratory to be examined.

The results can be summarized as follows:

7.1. Prevalence of Salmonella in examined skimmed dairy products samples

• Salmonella spp. could not be identified in all tested samples; hence all samples complied with Egyptian Standards.

7.2. Prevalence of *Escherichia coli* in examined skimmed dairy products samples

• The high prevalence of *E. coli* was detected in street-vendor Kareish cheese, and supermarket Kareish cheese by 56.67% (17/30) and 33.33% (10/30), respectively. Contrarily, the other examined skimmed products were free and fulfilled with the Egyptian Standards.

7.3. Prevalence of coagulase-positive *Staphylococcus aureus* in examined skimmed dairy products samples

- Coagulase-positive *Staphylococcus aureus* (CPSA) was identified in 6.67% (2/30), 6.67% (2/30), 6.67% (2/30), 0.0% (0/30), 3.33% (1/30), 3.33% (1/30) and 0.0% (0/30) in street-vendor Kareish cheese, supermarket Kareish cheese, light Feta cheese, light processed cheese, light plain yogurt, packed and unpacked skimmed milk powder, respectively with overall prevalence 3.81% (8/210). All the examined positive samples did not comply with the Egyptian Standards.
- Staphylococcal enterotoxigenic genes (*seb*, *sed*) were not detected in all isolates.

7.4. Prevalence of Methicillin-resistant *Staphylococcus aureus* (MRSA) in examined skimmed dairy products samples

- Methicillin-resistant *Staphylococcus aureus* (MRSA) was identified in 6.67% (2/30), 6.67% (2/30), 3.33% (1/30), 0.0% (0/30), 3.33% (1/30), 3.33% (1/30) and 0.0% (0/30) of street-vendor Kareish cheese, supermarket Kareish cheese, light Feta cheese, light processed cheese, light plain yogurt, packed and unpacked skimmed milk powder, respectively.
- All MRSA isolates showed multidrug resistance for at least four antimicrobial agents.

7.5. Prevalence of *Listeria monocytogenes* in examined skimmed dairy products samples

• *L. monocytogenes* could not be detected in all examined skimmed dairy products samples consequently, all examined samples were fulfilled with the Egyptian Standards.

7.6. Prevalence of *Bacillus cereus* in examined skimmed dairy products samples

- *B. cereus* could identify only in 3.33% (1/30), 6.67% (2/30) and 3.33% (1/30) of examined Feta cheese, packed and unpacked skimmed milk power, respectively, while could not be identified in other tested products. All positive examined samples were not fulfilled with the Egyptian Standards.
- *B. cereus* virulence genes (*hbl, cytK, ces*) were not identified in all tested isolates.

7.7. Prevalence of *Clostridium perfringens* in examined skimmed dairy products samples

• *C. perfringens* failed to be detected in all examined skimmed dairy products samples. All examined samples complied with the Egyptian Standards.

7.8. Antimicrobial activity of Ethanolic Extracted Propolis (EEP)

- EEP possesses high antimicrobial activity against Gram-positive bacteria (*S. aureus, B. cereus*) than Gram-negative ones (*E. coli*).
- EEP is highly effective against multidrug-resistant *Staphylococcus aureus*.